TU Bergakademie Freiberg forscht in Verbundprojekt an der perfekten Silizium-Solarzelle

Dr. Mathias Müller bei der Untersuchung einer Solarzelle. Detlev Müller

Erneuerbare Energien sind heute ein fester Bestandteil des Energiemixes. Eine Vorreiterrolle nimmt dabei die Nutzung des Sonnenlichts durch Photovoltaik-Solarmodule ein. Hierbei besitzt die kristalline Silizium-Technologie einen Anteil von ca. 95% am Photovoltaik-Weltmarkt.

Mit der Entwicklung der sogenannten PERC (Passivated Emitter and Rear Contact)-Solarzelle konnten in den letzten Jahren die Wirkungsgrade nochmal einmal deutlich angehoben werden. Sie liegen derzeit bei über 22 Prozent für einkristallines und bei rund 20 Prozent für multikristallines Silizium-Basismaterial.

Das Problem: Die PERC-Solarzellen sind sehr anfällig für Degradation, das heißt, der Wirkungsgrad der Solarzelle kann im Betrieb um mehrere Prozentpunkte absinken. Eine der Ursachen für diesen Wirkungsgradverlust ist die Beleuchtung bei erhöhter Temperatur, das so genannte LeTID (Light and elevated Temperature Induced Degradation)-Phänomen.

Selbst wenn dieser Degradationsmechanismus in einigen Fällen ausgeschaltet werden kann, sind der Wirkmechanismus und die Ursache des LeTID-Phänomens materialseitig noch nicht grundlegend verstanden.

Im ZORRO-Verbundvorhaben wird daher an einem Zero-Degradationskonzept für die industrielle Produktionstechnologie von multi- und monokristallinen PERC Solarmodulen gearbeitet. Die dafür notwendige Grundlagenforschung erfolgt unter anderem im modernen Reinraumlabor des Instituts für Angewandte Physik an der TU Bergakademie Freiberg.

Dort werden unter anderem die Ursachen der Defekte analysiert und deren Auswirkungen auf die Solarzelleffizienz und den Modulenergieertrag simuliert. Im Fokus steht das Zusammenspiel aus unterschiedlichsten Verunreinigungselementen im Wafergrundmaterial mit Wasserstoff, der während der Herstellung der Solarzelle eingebracht wird.

Das ZORRO-Projektkonsortium besteht aus einem Zusammenschluss von vier Forschungseinrichtungen sowie zwei assoziierten Industriepartnern. Das Fraunhofer IISB aus Erlangen, welches das Vorhaben koordiniert, bringt seine Expertise im Bereich der Kristallzüchtung ein und übernimmt die Herstellung von gezielt verunreinigtem Silizium-Grundmaterial.

Das International Solar Energy Research Center Konstanz e.V. (ISC) ist für die Herstellung von PERC-Solarzellen zuständig. Die Defekt- und Degradationsuntersuchungen werden von der Universi-tät Konstanz (UKN) sowie dem Institut für angewandte Physik (IAP) der Technischen Universität Bergakademie Freiberg (Sachsen) durchgeführt. Als assoziierte Industriepartner sind die Wacker Chemie AG und die Centrotherm International AG beteiligt.

Dr. Mathias Müller, Tel.: 03731-39-2162, E-Mail: matth.mueller@physik.tu-freiberg.de

Media Contact

Luisa Rischer idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.tu-freiberg.de/

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer