Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Solartechnik: Forschende lösen Rätsel um mysteriöses Quantenphänomen

30.10.2015

Mechanismus könnte Effizienz von Solarzellen verdoppeln

Ein internationales Team von Forschenden der Universitäten Cambridge, Lund und Kiel sowie des Forschungsinstitutes AMOLF in Amsterdam haben erstmals die sogenannte Singulett-Spaltung in Echtzeit beobachtet und aufgeklärt. Das Phänomen könnte bei der Entwicklung von hoch-effizienten Solarzellen helfen.


Forschende haben einen quantenmechanischen Mechanismus entschlüsselt, der Solarzellen doppelt so effektiv machen könnte.

Foto: AWA, www.flickr.com/photos/rainchurch/

Lizenz: CC BY-SA 2.0


Schrödingers Paradoxon bildlich dargestellt: Mit Hilfe der Quantenmechanik haben Forschende ein 50 Jahre altes Rätsel gelöst.

Robert Couse-Baker, www.flickr.com/photos/29233640@N07/

Lizenz: CC BY 2.0

Was ist die Singulett-Spaltung?

Trifft ein Lichtteilchen (Photon) auf ein Molekül und wird dort absorbiert, dann hebt es in diesem Molekül ein Elektron auf ein höheres Energieniveau. Dieser Zustand höherer Energie wird in der Fachsprache als "Singulett-Exziton" bezeichnet. Auf dem Weg zurück in seinen ursprünglichen, niedrigeren Energiezustand kann das Elektron über einen äußeren Stromkreis abgeführt werden – es entsteht elektrischer Strom.

In einigen wenigen Fällen ist es möglich, dass ein Molekül seine überschüssige Energie benutzt, um ein zweites Molekül in einen angeregten Zustand zu versetzen. Im Anschluss an diesen Prozess befindet sich dann je ein Elektron in den beiden Molekülen auf einem höheren Energieniveau.

Diese Zustände bezeichnet man als "Triplett-Exzitonen". Insgesamt kann ein Lichtteilchen also zwei angeregte Elektronen erzeugen, die wiederum zur Erzeugung von elektrischem Strom verwendet werden können – für die Solartechnik ist dieser Vorgang hochinteressant.

Da die Singulett-Spaltung in Femtosekunden (= eine Billiardstel Sekunde) abläuft, ist sie jedoch sehr schwer zu beobachten und zu erklären – und folglich schwer zu kontrollieren. Das internationale Forschungsteam ist letzterem nun näher gekommen, indem es herausgefunden hat, was genau bei diesem Phänomen vor sich geht:

Sie bestrahlten Pentacen-Moleküle mit ultrakurzen Femtosekunden-Laserimpulsen, um zu sehen, ob sich einzelne Photonen in zwei energetisch angeregte Elektronen umwandeln können. Das Ergebnis: Die „zwei für eins“-Umwandlung beinhaltet einen Zwischenzustand, in dem die beiden Triplett-Exzitonen ineinander verschränkt sind.

Schrödingers Katze lässt grüßen

„Das Hauptproblem bei der Echtzeit-Beobachtung der Singulett-Spaltung ist, dass die verknüpften Triplett-Exzitonen für fast alle optischen Abtastungen ‚dunkel‘ sind“, sagt Professorin Dassia Egorova von der Christian-Albrechts-Universität zu Kiel (CAU). „Das heißt, dass sie nicht direkt durch Licht erzeugt oder vernichtet werden können und somit nicht nachweisbar sind.“

Um das zu umgehen, haben die Experimentatoren aus Cambridge und Amsterdam das sogenannte zwei-dimensionale Photonen-Echo Signal in einem weltweit führenden Labor in Lund gemessen. Angeführt von Egorovas Kieler Team konnten sie anschließend ein erklärendes Modell entwickeln. Es beweist, dass wenn Pentacen-Moleküle von Laserimpulsen zur Vibration angeregt werden, sich ihre Form verändert.

Das führt dazu, dass das verschränkte Triplett-Paar kurzzeitig in der Lage ist, Licht zu absorbieren und damit nachweisbar wird. „Das Modell erklärt, dass die Moleküle durch das Vibrieren neue Quantenzustände besitzen, die gleichzeitig die Eigenschaften sowohl des lichtabsorbierenden Singulett-Exzitons, als auch die des ‚dunklen‘ Triplett-Paars haben“, sagt Egorova.

Zwei entgegengesetzte Zustände also, die in der Quantentheorie als „Superpositionen“ beschrieben werden. Bekannt sind diese seit Erwin Schrödingers Gedankenexperimenten aus den 1930er Jahren, nach denen eine Katze in einer Kiste mit den Regeln der Quantentheorie gleichzeitig lebendig und tot ist.

Die Studie aus Cambridge, Lund, Kiel und Amsterdam könnte jetzt dazu führen, die Singlett-Spaltung kontrollierbar zu machen. Neuartige, hoch-effiziente Solarzellen könnten dann doppelt so viel Strom aus einfallendem Licht erzeugen.

Originalpublikation:
Bakulin, Artem et. al.
Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy
Nature Chemistry (2015) | DOI: 10.1038/nchem.2371

Kontakt:
Professorin Dr. Dassia Egorova
Institut für Physikalische Chemie
Tel.: 0431/880 7741
E-Mail: egorova@phc.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text: Denis Schimmelpfennig
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Jubiläum: www.uni-kiel.de/cau350 
Twitter: www.twitter.com/kieluni , Facebook: www.facebook.com/kieluni 
Link zur Pressemitteilung: http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2015-391-solartechnik

Denis Schimmelpfennig | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schlaflos wegen Handy? Neue Displays könnten Abhilfe schaffen
21.06.2018 | Universität Basel

nachricht Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien
21.06.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics