Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Poröse Siliziumschichten für leistungsfähigere Lithium-Ionen-Batterien

05.09.2019

Wissenschaftler des Fraunhofer FEP haben im Rahmen des Projektes PoSiBat (FKZ 100275833) einen nicht toxischen und effizienten Herstellungsprozess für poröse Siliziumschichten entwickelt. Die Ergebnisse aus dem kürzlich abgeschlossenen Projekt werden im Workshop Dünnschicht-Technologie für Energiesysteme auf der V 2019 (08. – 10.10.2019, in Dresden) und auf dem Messestand des Fraunhofer FEP (Nr. 22) vorgestellt.

Lithium-Ionen-Batterien sind aufgrund ihrer guten Eigenschaften weit verbreitet. Sie weisen höhere Energiedichten als andere Batterien auf. Daher sind sie zum Beispiel in Kameras, Uhren, Handys und insbesondere im Bereich der Elektromobilität zu finden.


Schema der Anordnung einzelner Körner aus Zink (rot) und Silizium (blau) nach Abscheidung (links) und poröse Siliziumschicht nach Abdampfen von Zink durch Wärmebehandlung (rechts).

© Fraunhofer FEP; Bildquelle in Druckqualität: www.fep.fraunhofer.de/presse

Aus technischer Sicht gibt es aber weiterhin ein großes Potenzial für die Verbesserung und Optimierung der Zellen.

Lithium-Ionen-Batterien bestehen aus einer Anordnung diverser Schichten mit jeweils unterschiedlichen Funktionen. So sind Kathode und Anode die beiden Elektroden der Batterie und Elektrolyte die leitfähigen Materialien, die die Pole im Inneren der Zelle miteinander elektrisch verbinden.

Um die Eigenschaften der Batterie im Hinblick auf tragbare mobile Geräte und Elektromobilität weiter zu verbessern, wird derzeit verstärkt an Materialien und Herstellungsprozessen geforscht. Dabei spielen Betrachtungen zur Ressourcenschonung, Umweltschutz und Sicherheit eine erhebliche Rolle. Zudem sollen die Batterien nachhaltig und kostengünstig in großer Menge herstellbar sein.

Im Projekt PoSiBat wurde ein kosteneffizienter und umweltschonender Prozess zur Herstellung von porösen Siliziumschichten als Anodenmaterial entwickelt. Allerdings führen Lade- und Entladevorgang zu einer enormen Ausdehnung bzw. Schrumpfung des Siliziums und daher schnell zu einer mechanischen und elektrochemischen Zerstörung des Materialverbunds und so zum Zellversagen.

Dr. Stefan Saager vom Fraunhofer FEP erläutert die Innovation: „Wir haben einen Prozess entwickelt, bei dem zeitgleich Silizium und Zink auf Metallsubstraten abgeschieden werden. Durch eine anschließende Wärmebehandlung verdampft der Zinkanteil aus der Schicht und hinterlässt eine poröse Struktur im Silizium, die Platz für dessen Ausdehnung im Ladeprozess bietet und somit den Kapazitätsverlust minimiert. Durch die Prozessparameter lässt sich die poröse Struktur manipulieren und auf die konkrete Batterieanforderung optimieren. Das Zink lässt sich dabei auffangen und perspektivisch im Prozess wiederverwenden.“

Die porösen Siliziumschichten zeigen hinsichtlich ihrer Batterieperformance eine initiale Ladekapazität über 3.000 mAh/gSi und eine vergleichsweite gute Zyklenstabilität.

Die Expertise des Fraunhofer FEP liegt dabei in der Beschichtung von Metallsubstraten und -folien mit Zink und Silizium, die mit sehr hohen Beschichtungsraten in herkömmlichen nicht toxischen Vakuumprozessen möglich ist. Diese Prozesse ermöglichen einen hohen Durchsatz und geringe Herstellungskosten. Im Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS wurden die hergestellten Schichten hinsichtlich ihrer elektrochemischen Eigenschaften charakterisiert.

Die Wissenschaftler am Fraunhofer FEP freuen sich nun, die Ergebnisse gemeinsam mit Batterieherstellern in leistungsfähige Produkte umzusetzen. Sie sind offen für Kooperationen.

*Über das Projekt PoSiBat:
Im Forschungsvorhaben PoSiBat (Projektlaufzeit: 01.09.2016 – 31.05.2019) wurden grundlegende Untersuchungen zur Herstellung von hochporösen Siliziumschichten und zu deren Potenzial für die Fertigung von Lithium-Ionen-Batterien mit sehr hoher Energiedichte vorgenommen. Der Fokus lag dabei auf dem Ersatz herkömmlicher Materialien bei der Fertigung der negativen Batterieelektroden durch das Material Silizium, das eine besonders hohe auf die Masse bzw. auf das Volumen bezogene Kapazität zur Speicherung von Lithium-Ionen aufweist. Die Materialentwicklung zielt insbesondere auf den Anwendungsbereich in Fahrzeugen, bei denen der Batterie sowohl hohe Energiedichten als auch hohe Ströme abverlangt werden. In dem Projekt wurde zudem ein Konzept entwickelt, um die neuen Technologien auf einen Produktionsprozess aufzuskalieren. Das Projekt wurde aus Mitteln der Europäischen Union und des Freistaates Sachsen gefördert, Förderkennzeichen: 100275833.

*Fraunhofer FEP auf der V2019:

Industrieausstellung:
8. Oktober 2019, 13:00 – 22:00 Uhr
9. Oktober 2019, 09:00 – 17:30 Uhr
10. Oktober 2019, 09:00 – 13:00 Uhr
Stand Nr. 22

Posterausstellung:
Untersuchung von Technologien zur Abscheidung von verschleißmindernden
aluminiumreichen TiAlN-Schichten
M. Höhn*, M. Krug*, F. Fietzke**, B. Scheffel**,U. Ratayski***, D. Rafaja***, I. Garrn****,
G. Giersch****
* Fraunhofer IKTS Dresden
** Fraunhofer FEP Dresden
*** TU Bergakademie Freiberg
**** Dr. Gühring KG Chemnitz

Vorträge:
9. Oktober 2019, 12:00 – 12:30 Uhr, WS1 – V12
Herstellung von porösen Silizium-Schichten für Anwendungen in der Batterietechnik
Stefan Saager, Fraunhofer FEP

10. Oktober 2019, 09:00 – 09:30 Uhr, WS3 – V07
Anspruchsvolle laseroptische Beschichtungen durch Inline-Magnetronsputtern
Dr. Peter Frach, Fraunhofer FEP

Workshops:
WS 1: Energie - Dünnschicht-Technologie für Energiesysteme
Di., 08. 10. 2019, 11:30 – 18:00 Uhr
Mi., 09. 10. 2019, 11:30 – 12:30 Uhr

Programmkomitee:
Dr. Torsten Kopte, Fraunhofer FEP, Dresden
Dr. Volker Sittinger, Fraunhofer IST, Braunschweig
Dr. Martin Dimer, VON ARDENNE GmbH
Dr. Grit Hüttl, GfE Fremat GmbH, Freiberg

Besichtigungen:
10. Oktober 2019, 13:00 – 16:00 Uhr
Zum Ausklang der V2019 öffnen die Dresdner Forschungsstandorte ihre Türen. Auf dem Fraunhofer-Campus an der Dresdner Winterbergstraße werden u.a. Labore und Anlagen des Fraunhofer IWS, Fraunhofer IKTS sowie des Fraunhofer FEP besichtigt, über aktuelle Forschungsprojekte informiert und Möglichkeiten für gemeinsame Forschungsprojekte diskutiert.


Pressekontakt:

Frau Annett Arnold

Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP
Telefon +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Deutschland | www.fep.fraunhofer.de

Franziska Lehmann | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Eine OLED-Pilotlinie stellt sich vor: Von PI-SCALE zu LYTEUS
12.09.2019 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Einzelne Ionen in Festkörper platziert
12.09.2019 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Womit werden wir morgen kühlen?

Wissenschaftler bewerten das Potenzial von Werkstoffen für die magnetische Kühlung

Für das Jahr 2060 erwarten Zukunftsforscher einen Paradigmenwechsel beim globalen Energiekonsum: Erstmals wird die Menschheit mehr Energie zum Kühlen aufwenden...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Meilensteine auf dem Weg zur Atomkern-Uhr

Zwei Forschungsteams gelang es gleichzeitig, den lang gesuchten Kern-Übergang von Thorium zu messen, der extrem präzise Atomkern-Uhren ermöglicht. Die TU Wien ist an beiden beteiligt.

Wenn man die exakteste Uhr der Welt bauen möchte, braucht man einen Taktgeber, der sehr oft und extrem präzise tickt. In einer Atomuhr nutzt man dafür die...

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Die Digitalisierung verändert die Medizin

13.09.2019 | Veranstaltungen

Wie verändert Autonomes Fahren unseren Alltag?

12.09.2019 | Veranstaltungen

Künstliche Intelligenz – Wie können wir Algorithmen vertrauen?

11.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Womit werden wir morgen kühlen?

16.09.2019 | Physik Astronomie

Der Clou: Metallischer Einleger verhakt sich im faserverstärkten Kunststoff

16.09.2019 | Messenachrichten

Neues Limit für Neutrinomasse

16.09.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics