Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekül-Turnen mit großem Anwendungspotenzial

20.02.2013
Für die Lösung der Energieprobleme der Zukunft spielen Brennstoffzellen eine wichtige Rolle, weil sie chemische Energie effizient und umweltfreundlich in elektrischen Strom umwandeln.

Einen wichtigen Beitrag zum verbesserten Verständnis dieser Energiewandler haben nun Chemiker der Universität Bonn geleistet: Ihnen ist es erstmals gelungen, den „Flip-Flop“ einer Wasserstoffbrücke zeitlich hoch aufgelöst aufzuzeichnen. Diese Moleküldrehung ist für den Transport der Wasserstoff-Ionen in der Brennstoffzelle entscheidend. Die Ergebnisse sind nun in der renommierten Fachzeitschrift „Angewandte Chemie“ veröffentlicht.


Molekulares Kino: Mit Hilfe der Lasersprektroskopie machen Prof. Dr. Peter Vöhringer, Annika Dahmen und Martin Olschewski vom Institut für Physikalische und Theoretische Chemie der Universität Bonn die Bewegung der Wasserstoffbrücken im Billionstel Sekundenbereich sichtbar.
(c) Foto: Volker Lannert/Uni Bonn

Glitzernder Schnee und zugefrorene Teiche: Winterlandschaften sind ästhetisch und laden zum Schlittschuhlaufen, Schlitten- oder Skifahren ein. Ohne die einmaligen Eigenschaften von Wasser wäre das nicht möglich. Die Flüssigkeit verwandelt sich bei Minusgraden in wohl geordnete Eiskristalle, die als sechsarmige Schneeflocken vom Himmel rieseln oder als Eis Gewässer bedecken. „Durch die Kristallstruktur braucht gefrorenes Wasser mehr Platz als flüssiges, deshalb schwimmt Eis an der Oberfläche“, sagt Prof. Dr. Peter Vöhringer vom Institut für Physikalische und Theoretische Chemie der Universität Bonn.

Sauerstoff und Wasserstoff bilden eine Brücke

Ein Wassermolekül besteht aus zwei Wasserstoff- und einem Sauerstoffatom. Seine drei Atome liegen nicht auf einer geraden Linie, sondern knicken wie ein Bumerang ab. Die elektrischen Ladungen sind asymmetrisch verteilt: positiv am Wasserstoff- und negativ am Sauerstoffatom. Die entgegengesetzten Ladungen der benachbarten Wassermoleküle ziehen sich deshalb wie Magnete an – der Sauerstoff und der Wasserstoff bilden eine Brücke. „In flüssigem Wasser entstehen diese instabilen Wasserstoffbrücken für unvorstellbar kurze Bruchteile einer Sekunde“, sagt Prof. Vöhringer. Dagegen fügen sich die Wassermoleküle im Eis durch die Brücken zu regelmäßigen sechseckigen Strukturen zusammen, die dauerhaft sind – solange das Eis nicht schmilzt.

Die Drehung erfolgt in Form eines Flip-Flops

Es gelingt aber nicht immer, dass sich sämtliche Wassermoleküle im Eis zu perfekten Sechserringen ausbilden: Manchmal ragen statt eines Sauerstoff- und eines Wasserstoffatoms auch zwei Wasserstoffatome oder zwei Sauerstoffatome aneinander – dann liegt ein „Bjerrum’scher Defekt“ vor.

Die gleich geladenen Atome stoßen sich dabei ab und vollziehen in einem „Flip-Flop“ eine Drehung, bis sich die Richtung der H-Brücke genau um 180 Grad geändert hat. „Experimentell konnte zuvor diese Flip-Flop-Bewegung noch nicht zeitlich aufgelöst beobachtet werden“, erläutert der Physikochemiker der Universität Bonn. Dem Team von Prof. Vöhringer gelang nun mit Hilfe der Laserspektroskopie, wie in einem molekularen Kino die Bewegung der Wasserstoffbrücken im Billionstel Sekundenbereich aufzuzeichnen. Die Wissenschaftler führten die Beobachtungen an dem einfachen Modellmolekül Pinakol durch, einer organischen Verbindung, aus der wie beim Wasser ebenfalls Gruppen mit Sauerstoff- und Wasserstoffatomen herausragen.

Grundlage für die Entwicklung effektiverer Brennstoffzellen

Was zunächst wie eine reine Turnübung von Molekülen wirkt, hat großes Anwendungspotenzial: etwa für die umweltfreundliche Verbrennung von explosivem Wasserstoff zu harmlosem Wasser in Brennstoffzellen. Die Effektivität dieser technischen Anwendung hängt entscheidend davon ab, wie gut die Wasserstoff-Ionen im Innern der Brennstoffzelle transportiert werden können. „Unsere Erkenntnisse zu den Wasserstoffbrücken-Flip-Flops zeigen einen Weg, wie dies besser und schneller geschehen kann“, blickt Prof. Vöhringer in die Zukunft.

8,3 Millionen Euro für die Verlängerung des Sonderforschungsbereichs

Die Grundlage solcher Reaktionen werden an der Universität Bonn im Sonderforschungsbereich „Chemie an Spinzentren: Konzepte, Mechanismen, Funktionen“ (SFB 813) untersucht. Für die Verbrennung von Wasserstoff ist Sauerstoff erforderlich, der zwei freie Elektronen als sehr reaktionsfreudige Einzelgänger hat. Diese Reaktivität und die außergewöhnlichen Eigenschaften von Materie mit ungepaarten Elektronen wollen die Wissenschaftler im Detail verstehen und mit modernsten Computerverfahren vorhersagen. Der interdisziplinäre Zusammenschluss von Forschern der drei chemischen Institute, des Pharmazeutischen Instituts und des LIMES-Instituts der Universität Bonn wird nun von der Deutschen Forschungsgemeinschaft mit 8,3 Millionen Euro für weitere vier Jahre gefördert. „Wir freuen uns sehr über diese Verlängerung, weil wir dadurch an der Front der Forschung zu weiteren grundlegenden Erkenntnissen kommen können“, sagt Prof. Vöhringer, Koordinator des SFB 813. Diese Erkenntnisse können in Zukunft bei der Versorgung mit nachhaltiger Energie eine Schlüsselrolle spielen.

Publikation: Flip-Flop einer Wasserstoffbrücke durch einen Bjerrum´schen Defekt, Angewandte Chemie, DOI: 10.1002/anie.201208625

Kontakt:

Prof. Dr. Peter Vöhringer
Institut für Physikalische und Theoretische Chemie
Sprecher des SFB 813 „Chemie an Spinzentren“
Tel. 0228/737050
E-Mail: p.voehringer@uni-bonn.de
Weitere Informationen:
http://dx.doi.org/10.1002/anie.201208625
Publikation im Internet
http://www3.uni-bonn.de/forschung/forschungsprofil/sonderforschungsbereiche/sfb-813

Informationen zum Sonderforschungsbereich 813

http://www.uni-bonn.tv/podcasts/SF813.mp4/view
Podcast

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schlaflos wegen Handy? Neue Displays könnten Abhilfe schaffen
21.06.2018 | Universität Basel

nachricht Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien
21.06.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics