Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flugzeug-Sensoren ohne Batterie und Kabel

18.03.2013
Eine Idee von EADS und TU Wien hebt ab: Gemeinsam wurden Flugzeug-taugliche Energy Harvester Module getestet, die zukünftig Sensoren mit elektrischem Strom versorgen sollen.

Wie ein Nervensystem sollen Netze aus Sensoren in Zukunft wichtige Daten auf der Flugzeughülle registrieren und weiterleiten. Eine Verkabelung dieser Sensoren wäre viel zu aufwändig und zu schwer.


Werden Flugzeuge schon bald mit der neuen TU-Erfindung an Bord abheben?
Copyright: EADS


Gepolstert, in der Wand des Flugzeuges: Das Energy-Harvester-Modul
Copyright: EADS

In gemeinsamer Forschungsarbeit entwickelten daher nun EADS Innovation Works und die TU Wien ein wenige Zentimeter großes „Energy Harvesting Modul“, das Sensorsysteme im Flugzeug mit Energie versorgen kann. Der Sensor leitet seine Daten per Funk weiter – so soll eine völlig neue Sensor-Einheit in der Flugzeugwand entstehen. Die Energie wird aus dem Temperaturunterschied zwischen eisigen Höhen und wärmerer Bodenluft gewonnen. Nun wurden diese Energy Harvesting Module erstmals in Testflügen unter realen Flugbedingungen erprobt – mit Erfolg.

Kostenfaktor Flugzeugwartung

Die Wartung von Flugzeugen ist teuer: Mit ca. 20% der Gesamtkosten ist sie einer der wichtigsten Kostenfaktoren des Fliegens, neben den Gehältern des Flugpersonals, Treibstoffkosten und der altersbedingten Wertminderung des Flugzeugs. Anstatt das ganze Flugzeug mühsam zu inspizieren sollen daher in Zukunft autonome Sensoren die nötigen Daten liefern. Diese Daten werden über Funk an Wartungsrechner gesendet und am Boden ausgelesen.

„Ein solches System hat also offensichtlich große Vorteile. Das Hauptproblem liegt allerdings in der Energieversorgung“, erklärt Prof. Ulrich Schmid vom Institut für Sensor- und Aktuatorsysteme der TU Wien. „Herkömmliche Batterien sind für die großen Temperaturwechsel, die ein Flugzeug permanent ausgesetzt ist, nicht ausgelegt. Außerdem will niemand regelmäßig all die Sensorbatterien im ganzen Flugzeug auswechseln. Eine Verkabelung wiederum würde das Flugzeuggewicht empfindlich erhöhen.“ Zusammen mit EADS Innovation Works entwickelte er daher eine Methode, direkt an der Flugzeugwand elektrische Energie für die Sensoren zu gewinnen.

Energie aus Temperaturunterschieden

Wenn zwei Punkte, an denen unterschiedliche Temperaturen herrschen, mit zwei verschiedenen elektrisch leitfähigen Materialien verbunden werden, kann elektrische Spannung entstehen – dieses Phänomen bezeichnet man als „Seebeck-Effekt“. Die Außenwand des Flugzeugs macht bei Start und Landung eine massive Temperaturänderung durch, dabei entstehen Temperaturunterschiede zwischen der Außenseite und der Innenseite der Wand. „Optimal nützen können wir das durch einen kleinen Wärmespeicher“, erklärt Alexandros Elefsiniotis, Dissertand von Prof. Schmid. „Ein Wasserreservoir mit etwa zehn Kubikzentimetern Fassungsvermögen wird aufgewärmt, wenn das Flugzeug am Boden steht und speichert die Wärme, sodass dann hoch in der Luft damit Strom erzeugt werden kann.“ Während des Fluges kühlt das Wasser ab und friert ein. Bei der Landung ist dann die Außenseite des Flugzeuges wärmer als das Wasserreservoir, derselbe Effekt kann in umgekehrter Richtung noch einmal genutzt werden.

Durch eigens entwickelte elektronische Schaltungen wird sichergestellt, dass die zeitlich fluktuierenden Thermo-Ströme in einen gleichmäßigen Strom mit ausreichend hoher Spannung umgewandelt wird, mit dem ein Sensor stundenlang versorgt werden kann.

Erfolgreiche Tests bei EADS

Am Beginn des Projektes standen Simulationsrechnungen und Klimakammer-Experimente, in den letzten Monaten wurden aber von EADS Innovation Works erstmals Testflüge auf Airbus-Flugzeugen mit Energy Harvesting Modulen durchgeführt. Alexandros Elefsiniotis analysierte die Ergebnisse: „Wir konnten pro Flug etwa 23 Joule Energie gewinnen – für den Sensorbetrieb reicht das aus.“ Je nach Außentemperatur könnten auch andere Materialien oder andere Flüssigkeiten als Wasser besser geeignet sein – derzeit wird noch an passenden Strategien für Extremfälle geforscht, etwa für Flugrouten in sehr kalten Regionen.

„EADS Innovation Works will auch in Zukunft die beste verfügbare Technologie für die autonome Sensorik verwenden, daher ist die neue Methode für uns höchst interessant“, erklärt Prof. Becker von EADS Innovation Works. „Wir sind zuversichtlich, dass die selbstversorgenden Sensoren schon bald in unseren Flugzeugen mitfliegen werden.“

Rückfragehinweis:
Prof. Ulrich Schmid
Institut für Sensor- und Aktuatorsysteme
Technische Universität Wien
Floragasse 7, 1040 Wien
T: +43-1-58801-36689
ulrich.e366.schmid@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schlaflos wegen Handy? Neue Displays könnten Abhilfe schaffen
21.06.2018 | Universität Basel

nachricht Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien
21.06.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics