Wenn bunte Handy-Gehäuse zum Bildschirm passen müssen

Neuartige organische Leuchtdioden liefern Dreifarben-Displays

Organische Leuchtdioden, kurz OLEDs, sind eine sehr leistungsstarke Technologie zur Herstellung von Flachbildschirmen. Im Vergleich zu konventionellen Flüssigkristall-Monitoren bieten sie brillante Farben, eine hohe Leuchtkraft und sehr dünne Bauform. Seit einiger Zeit schon werden OLEDs als einfarbige Grafikdisplays etwa bei Autoradios eingesetzt – kürzlich kam ein Rasierapparat mit OLED-Display auf den Markt. Wegen der niedrigen Betriebsspannung sind sie ideal für tragbare Elektronikgeräte wie Mobiltelefone und Personal Organizers.

Für diese batteriebetriebenen Geräte sollen organische Leuchtdioden jetzt auch farbige Bildschirme liefern. Professor Klaus Meerholz von der Chemie der Ludwig-Maximilians-Universität München, jetzt Institut für Physikalische Chemie der Universität Köln, hat zusammen mit Wissenschaftlern der TU München und der Frankfurter Firma Covion eine neue chemische Substanzklasse entwickelt, die es erlaubt, hochaufgelöste Displays in den drei Grundfarben Rot-Grün-Blau (RGB) nasschemisch herzustellen (Nature, 20.02.03). „Ich glaube, dass unser Verfahren sehr schnell marktreif sein könnte, weil das von uns eingesetzte Verfahren, der Einsatz so genannter Photolacke, von allen einschlägigen Display-Herstellern für andere Prozessschritte eingesetzt wird“, erklärt Meerholz. „Unsere neue Technologie sollte also relativ schnell zu adaptieren sein.“

Es gibt bereits farbige Anzeigen für Handys, Pocket Computers und Personal Organizers. „Sie basieren aber meist auf Flüssigkristallanzeigen, die erst durch die Reflexion von Licht eine Farbe zeigen“, so Meerholz. „Im Dunkeln sind sie nicht zu sehen und werden erst durch eine Hintergrundbeleuchtung sichtbar.“ Organische Leuchtdioden gelten als die Technologie für die nächste Generation der kleinen Farbbildschirme. Bislang konnten farbige Displays nur durch aufwendige Aufdampf-Verfahren hergestellt werden, das Auftragen der Schichten aus Lösung wäre aber viel billiger. Derzeit werden Siebdruck und Tintenstrahldruck für die OLED-Herstellung adaptiert. „Allerdings gilt es noch einige technische Probleme“, so Meerholz. Unsere Methode dagegen hat jetzt schon prinzipiell alles, was man für einen kommerziellen Einsatz braucht.“

Zum Verfahren

Organische Leuchtdioden bestehen aus einer oder mehreren halbleitenden organischen Schichten, die von zwei Elektroden eingeschlossen werden. Sie enthalten lichtaussendende Materialien, die beim Anlegen einer elektrischen Spannung hell aufleuchten. Die Herstellung von OLEDs ist prinzipiell sehr einfach: Auf Glas oder auf durchsichtige, biegsame Trägerfolie wird ein transparenter, elektrischer Leiter aufgebracht. Diese Anode wird mit der Leuchtschicht hauchdünn überzogen. Abschließend wird noch eine Kathode aufgedampft. Insgesamt ist dieses Bauteil nicht dicker als 200 Nanometer (0,2 tausendstel Millimeter).

Beim Anlegen einer elektrischen Spannung – zwischen drei und fünf Volt – wandern Elektronen aus der Kathode in den organischen Film. Von der Anode werden währenddessen Elektronen aus dem organischen Material entfernt, so dass insgesamt negative und positive Ladungsträger entstehen. Die Ladungen wandern dann in entgegengesetzte Richtungen, also aufeinander zu. Treffen zwei ungleiche Ladungsträger in der Leuchtschicht aufeinander, gleichen sich ihre Ladungen aus, und die dabei freigesetzte Energie wird als Licht, so genannte Elektrolumineszenz, freigesetzt. Über chemische Veränderungen in der leitenden Schicht können alle Farben erzeugt werden.

OLEDs lassen sich prinzipiell durch Vakuumsublimation oder durch nass-chemische Beschichtung herstellen. Letzteres hat viele produktionstechnische Vorteile, allerdings ließen sich farbige Displays nur unter großen Schwierigkeiten herstellen. Die von Meerholz und seinen Kooperationspartnern entwickelte Substanzklasse besteht aus Bausteinen, die so genannte Oxetan-Seitengruppen haben. Die Forscher von Covion integrierten diese Einheiten in lösliche, lichtemittierende Polymere, die hierdurch photovernetzbar wurden. Die entstandene neue chemische Substanzklasse ist die Antwort auf die oben erwähnten Probleme. Die Materialien werden aus Lösung aufgetragen und können durch gezielte UV-Belichtung ausgehärtet werden, wobei die Oxetangruppen miteinander reagieren. Damit entstehen an belichteten Stellen unlösliche Netzwerke. Das erlaubt sogar das Auflegen mehrerer – theoretisch beliebig vieler – Leit- bzw. Leuchtschichten, ohne die elektrischen und optischen Eigenschaften zu beeinträchtigen.

Die Perspektive

Die Performance der neuen Substanzklasse ist mit der der besten bisher bekannten Leuchtpolymeren der Firma Covion vergleichbar. Die Farben rot, grün und blau erscheinen brillant sowie gestochen scharf. Die Auflösung ist für Anwendungen als pixelierte Farbbildschirme mehr als ausreichend. Doch die Anwendungs-möglichkeiten sind mit Handys und Personal Organizers noch nicht erschöpft. „Diese kleinen Bildschirme sind nur ein erster Schritt“, meint Meerholz. „Größere Displays, etwa für Laptops, könnten damit prinzipiell genauso hergestellt werden. Das erfordert allerdings einen gewissen Mehraufwand und längere Entwicklungszeiten. Aber ganz klar: Unsere Technik ist allgemein anwendbar und nicht auf kleine Displays beschränkt.“

Ansprechpartner:

Professor Dr. Klaus Meerholz
Institut für Physikalische Chemie,
Universität Köln, vormals LMU München
Tel.: 0221 / 470-3275
E-mail: klaus.meerholz@uni-koeln.de

Media Contact

Cornelia Glees-zur Bonsen idw

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer