Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zucker im Windkanal

01.10.2015

Wissenschaftler können mit einem neuen Verfahren erstmals komplexe Zuckermoleküle sequenzieren

Einem Berliner Forscherteam um Kevin Pagel von der Freien Universität Berlin und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft und Peter Seeberger vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam und der Freien Universität Berlin haben die Analyse von Kohlenhydraten entscheidend verbessert.

Mit dem von Pagel und Seeberger entwickelten Verfahren können komplexe Zucker jetzt auch sequenziert werden. Es ist nun möglich schneller und einfacher geringste Verunreinigungen zu erkennen und damit die Qualitätskontrolle von synthetisch hergestellten Kohlenhydraten zu ermöglichen.

Das Verfahren ist wichtig für die Entwicklung neuartiger Impfstoffe, Wirkstoffe und Diagnostika. Für die Glykobiologie ist dies ein ähnlicher Durchbruch wie die DNA-Sequenzierung für die Genetik.

Kohlenhydrate sind wesentlich komplizierter aufgebaut als die DNA oder Proteine. Während DNA-Moleküle aus vier Grundbausteinen und Proteine aus 20 Aminosäuren aufgebaut sind, existieren in der Natur mehr als 100 Zuckerbausteine.

Darüber hinaus sind die DNA-Grundbausteine und Aminosäuren ausschließlich kettenförmig aneinandergefügt. Zucker können aber auch Verzweigungen und räumlich unterschiedliche Anordnungen (Anomere) bilden. Fast alle Zellen sind von einem Zuckermantel umgeben, der für Immunantworten, für die Identifizierung von Zellen untereinander und die Befruchtung von Eizellen verantwortlich ist. Zucker spielen also eine sehr wichtige Rolle in vielen natürlichen Abläufen.

Die ungeheure Vielfalt der aus Kohlenstoff, Wasserstoff und Sauerstoff bestehenden Zuckermoleküle in der Natur kann aber für Chemiker bei der Forschung zum Problem werden, wenn sie spezifische Moleküle finden oder herstellen wollen. Denn einzelne Zuckerbausteine können auf sehr viele verschiedene Arten aneinander binden.

Schon einfache Zuckermoleküle haben oft genau die gleiche Anzahl von Atomen, besitzen also die gleiche Masse; nur der Winkel einer Bindung unterscheidet sie. Diese anscheinend gleichen Moleküle, sogenannte Isomere, sind aber sehr unterschiedlich biologisch aktiv. Ein Beispiel sind Glukose und Galaktose. Die Summenformel ist identisch, C6H12O6, die Moleküle und deren biologische Wirkung sind es aber nicht.

Chemiker behelfen sich bei der Identifikation von Molekülen immer mit Tricks, denn auf der atomaren Ebene können die meisten Moleküle nicht beobachtet werden. Zum Beispiel ermitteln sie die Masse von Molekülen, untersuchen ihre magnetischen Eigenschaften oder das Licht, das sie aussenden, wenn die Substanzen verglühen.

Damit kann man viele Verbindungen gut aufklären, aber all das hilft nicht, wenn es sich um Zucker-Isomere handelt, bei denen nur die Anordnung der Atome unterschiedlich ist. Es gibt drei Arten solcher Unterschiede in Zuckern aus der gleichen Anzahl von Atomen: Komposition, Konnektivität und Konfiguration, und alle drei waren bisher für Forscher nur mit sehr hohem Zeit und Materialaufwand und mit großen Molekülmengen feststellbar.

Die Berliner und Potsdamer Wissenschaftler haben dieses knifflige Problem jetzt durch die Kombination verschiedener Methoden gelöst: Sie nutzen die unterschiedliche Form der Moleküle. Die unterschiedlichen Formen erzeugen in einem gasgefüllten Raum, durch den die Moleküle geschickt werden, unterschiedlich starken Widerstand, vergleichbar mit dem sogenannten CW-Wert in einem Windkanal.

Pagel und seine Kollegen kombinierten diese Messung der Ionenmobilität mit einer Messung der Molekülmassen. Dann glichen sie beide Informationen gegeneinander ab, um Unterschiede in der Komposition, Konnektivität und Konfiguration zu finden. Große Moleküle werden dabei in Bestandteile zerlegt, die Form der Bestandteile wird durch die Aufspaltung jedoch nicht verändert, so dass die Summe der Eigenschaften der Bestandteile das große Molekül genau beschreibt.

Kombiniert mit einer Datenbank, die derzeit erstellt und auch von anderen Wissenschaftlern bestückt werden soll, lässt sich das Analyseverfahren so auf eine immer größere Anzahl von Molekülen anwenden. Ist ein Molekül einmal systematisch identifiziert worden, kann es in Zukunft auch durch automatisierte Verfahren erkannt werden.

Praktischen Nutzen hat das neue Verfahren für die Qualitätskontrolle synthetisch hergestellter Zucker. Syntheseroboter reihen dabei Moleküle wie Perlen an einer Schnur auf. Bisher war es nur möglich, Unreinheiten zu entdecken, wenn sie mindestens fünf Prozent ausmachten. Mit der neuen „Windkanalmethode“ konnte diese Nachweisgrenze auf 0,1 Prozent verringert werden.

„Die neue Methode ist schnell, zuverlässig und sehr sensitiv. Dadurch wird die Glykan-Sequenzierung einen riesigen Schub bekommen – ähnlich wie in der DNA Forschung, auch dort brachte die Gensequenzierung den Durchbruch“, erklärt Seeberger.

Die Glykobiologie beschäftigt sich mit biologisch aktiven Kohlehydraten. Sie ist eines der aussichtsreichsten Gebiete der Chemie und der Wissenschaft allgemein, Berlin ist weltweit eines der wichtigsten Zentren dieses Forschungsgebietes.

Bis 1974 wurden sieben Nobelpreise in den Glykowissenschaften verliehen, dann jedoch wurde es ruhig um die Zucker, denn die Untersuchungsmethoden wurden nicht im gleichen Maß wie in der Genetik weiterentwickelt. Durch die neuen Ergebnisse hat das Forschungsgebiet einen weiteren großen Schritt zur technischen Nutzung gemacht.

Ansprechpartner

Prof. Dr. Peter H. Seeberger
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9301

Fax: +49 331 567-9102

E-Mail: peter.seeberger@mpikg.mpg.de


Prof. Dr. Kevin Pagel
Institut für Chemie and Biochemie

Freie Universität Berlin
Telefon: +49 30 838-72703

E-Mail: kevin.pagel@fu-berlin.de


Originalpublikation

J. Hofmann, H. S. Hahm, P. H. Seeberger & K. Pagel

Identification of carbohydrate anomers using ion mobility–mass spectrometry

Nature, 1 October 2015 (doi:10.1038/nature15388)

Prof. Dr. Peter H. Seeberger | Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Weitere Informationen:
https://www.mpg.de/9673921/zucker-sequenzierung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemiker lassen Bor-Atome wandern
17.01.2020 | Westfälische Wilhelms-Universität Münster

nachricht Infektiöse Proteine bei Alzheimer
17.01.2020 | Klinikum der Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik

Um den Transfer von Forschungsentwicklungen aus dem Bereich der Quantensensorik in industrielle Anwendungen voranzubringen, entsteht am Fraunhofer IAF ein Applikationslabor. Damit sollen interessierte Unternehmen und insbesondere regionale KMU sowie Start-ups die Möglichkeit erhalten, das Innovationspotenzial von Quantensensoren für ihre spezifischen Anforderungen zu evaluieren. Sowohl das Land Baden-Württemberg als auch die Fraunhofer-Gesellschaft fördern das auf vier Jahre angelegte Vorhaben mit jeweils einer Million Euro.

Das Applikationslabor wird im Rahmen des Fraunhofer-Leitprojekts »QMag«, kurz für Quantenmagnetometrie, errichtet. In dem Projekt entwickeln Forschende von...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: Wie Zellen ihr Skelett bilden

Wissenschaftler erforschen die Entstehung sogenannter Mikrotubuli

Zellen benötigen für viele wichtige Prozesse wie Zellteilung und zelluläre Transportvorgänge strukturgebende Filamente, sogenannte Mikrotubuli.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2020

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemiker lassen Bor-Atome wandern

17.01.2020 | Biowissenschaften Chemie

Infektiöse Proteine bei Alzheimer

17.01.2020 | Biowissenschaften Chemie

Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

17.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics