Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Ziehen statt kochen“: Eine neue Form der Chemie

04.10.2012
Moleküle konstruieren und modifizieren mit kovalenter Mechanochemie
Theoretische Chemiker der RUB entwickeln wegweisende Konzepte
Moleküle konstruieren und modifizieren, das ist das Ziel der Chemiker. Wärme, Licht und Elektrizität sind bekannte Energiequellen, um das zu bewerkstelligen. Seit einigen Jahren etablieren Wissenschaftler jedoch eine weitere Methode:

Die Energielandschaft verändern: Sind die mechanischen Kräfte (F), die auf ein Molekül einwirken, stark genug, kann sich die Topologie der Energielandschaft, auf der die chemischen Reaktionen ablaufen, verändern. Dadurch entstehen neue Reaktionswege und damit andere Reaktionsprodukte (rechts, blau), als wenn das Molekül mit Wärme behandelt worden wäre (links, magenta).

Illustration: J. Ribas-Arino und D. Marx

mechanische Kräfte.

Dieses neue Forschungsgebiet, die sogenannte kovalente Mechanochemie, beschreiben Professor Dominik Marx, Inhaber des Lehrstuhls für Theoretische Chemie der Ruhr-Universität, und Dr. Jordi Ribas-Arino (Universität Barcelona), ehemaliger Humboldt-Stipendiat der RUB, in einem umfangreichen Übersichtsartikel in der renommierten Zeitschrift Chemical Reviews. Die konzeptionellen Beiträge der „Koselleck Focus Group“ um Professor Marx zur Theorie der kovalenten Mechanochemie wurden in der ersten Oktoberausgabe des Magazins Chemical & Engineering News der American Chemical Society in einem Feature-Artikel gewürdigt.

Mechanische Kräfte „verbiegen“ die Energielandschaft chemischer Reaktionen

Vor fünf Jahren gelang es Jeff Moore von der Universität Illinois (Urbana-Champaign) und Kollegen erstmals, mechanische Kräfte einzusetzen, um Moleküle in Lösung kontrolliert zu manipulieren. Aufbauend auf ihren Beiträgen zur mechanischen Manipulation von Molekül-Oberflächenkontakten entwickelten die Theoretischen Chemiker der RUB Konzepte und Rechenmethoden, um diese neuartige „kovalente Mechanochemie“ fundamental zu verstehen und am Computer zu simulieren. Die Grundidee ist, dass die externen Kräfte, die im Experiment auf Moleküle wirken, systematisch die Energielandschaft „verbiegen“, auf der chemische Reaktionen ablaufen. Die Deformation kann so stark sein, dass sich neue Reaktionswege eröffnen, die mit anderen Energiequellen wie Wärme nicht zur Verfügung stünden.

Moleküle mit Nano-Kräften manipulieren

Kräfte in der Größenordnung von „Nano-Newton“ reichen aus, um chemische Bindungen in Molekülen neu zu arrangieren. „Das sind im wahrsten Sinne des Wortes zwergenhaft winzige Kräfte“, erklärt Dominik Marx. „In unserer Erlebenswelt entspricht das ganz grob der Gravitationskraft zwischen zwei Menschen, die in einem Abstand von wenigen Metern voneinander stehen – also unmerklich klein! Aber auf der molekularen Ebene reichen diese Kräfte eben aus, um chemische Strukturen umzubauen.“ Mögliche Anwendungen für die kovalente Mechanochemie werden bereits erprobt. „Sie wurde von Rint Sijbesma von der Universiteit Eindhoven schon eingesetzt, um Katalysatoren per Ultraschall von einem Schlafzustand in ihren aktiven Zustand umzuwandeln. Aber das ist eher was für meine Experimentalkollegen“, meint Marx, „wir interessieren uns für die zugrundeliegenden Konzepte.“

Moleküle „mit Gewalt“ abreißen

Die Basis für diese Forschungsrichtung waren Computersimulationen von Experimenten mit atomarer Kraftmikroskopie (AFM), die Marx und Kollegen vor zehn Jahren publizierten. Bei diesen Simulationen werden einzelne Moleküle, die vorher fest auf einer Oberfläche verankert wurden, durch mechanische Kräfte von der Oberfläche abgerissen – quasi mit Gewalt. „Dabei stellte sich heraus, dass nicht einfach eine wohldefinierte chemische Bindung bricht“, sagt Marx. Stattdessen ordnen sich die Atome in sehr komplexer Weise genau an der Kontaktstelle von Molekül und Oberfläche neu an.

Die Geschichte der kovalenten Mechanochemie an der RUB

Basierend auf diesen Studien entwickelte Dominik Marx kürzlich neue Rechenmethoden zur Simulation der kovalenten Mechanochemie gemeinsam mit den Humboldt-Stipendiaten Jordi Ribas-Arino von der Universität Barcelona und Motoyuki Shiga von der Universität Tokyo. In einem von der Deutschen Forschungsgemeinschaft geförderten Reinhart Koselleck-Projekt für besonders risikobehaftete Forschung baute Marx eine mehrköpfige „Mechanochemistry Focus Group“ an der RUB auf. Um von theoretischen Konzepten zu praktischen Aussagen für konkrete Moleküle zu gelangen, braucht man Computersimulationen als Werkzeug. Die hierfür erforderlichen ab initio-Simulationsmethoden sind allerdings extrem rechenaufwändig. Für sie ist das BoViLab@RUB, das „Bochumer Virtuelle Labor“, unerlässlich, das Marx über viele Jahre zusammen mit Dr. Holger Langer an seinem Lehrstuhl aufgebaut hat. „Nun bin ich dabei, mit Kollegen aus der experimentellen Chemie zu sprechen, wie wir gemeinsam in diesem faszinierenden Gebiet weitermachen können“, sagt Marx.
Titelaufnahmen

J. Ribas-Arino, D. Marx (2012): Covalent Mechanochemistry: Theoretical Concepts and Computational Tools with Applications to Molecular Nanomechanics, Chemical Reviews, doi: 10.1021/cr200399q

B. Halford (2012): Tugging on Molecules, Chemistry & Engineering News, Volume 90, Issue 40, Page 55

Weitere Informationen

Prof. Dr. Dominik Marx, Lehrstuhl für Theoretische Chemie, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-28083
dominik.marx@theochem.rub.de

Angeklickt

Video: Kovalente Mechanochemie im Labor
http://www.theochem.rub.de/go/afm.html

Theoretische Chemie an der RUB
http://www.theochem.rub.de/

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.theochem.rub.de/
http://www.theochem.rub.de/go/afm.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Parasit tarnt sich durch Umstrukturierung
18.10.2018 | Ludwig-Maximilians-Universität München

nachricht Was macht Graphen in der Lunge?
18.10.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

RUDN chemist tested a new nanocatalyst for obtaining hydrogen

18.10.2018 | Life Sciences

Massive organism is crashing on our watch

18.10.2018 | Earth Sciences

Electrical enhancement: Engineers speed up electrons in semiconductors

18.10.2018 | Life Sciences

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics