Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellteilung bei Pflanzen: Wie der Bau der Zellwand gesteuert wird

20.02.2019

Pflanzenforscher der Martin-Luther-Universität Halle-Wittenberg (MLU) liefern neue Einblicke in die Grundlagen der Zellteilung bei Pflanzen. Den Wissenschaftlern ist es gelungen, die Koordination wichtiger Prozesse zu verstehen, die während der Zellteilung für die korrekte Trennung der Tochterzellen von zentraler Bedeutung sind. In der renommierten Fachzeitschrift "The EMBO Journal" beschreiben sie, welche Aufgaben bestimmte Membranbausteine dabei haben und welche Folgen es für die Pflanze hat, wenn sie gestört sind.

Für ihre Studie untersuchten die Pflanzenforscher die Wurzeln der Ackerschmalwand. Sie züchteten normale Pflanzen und solche, in denen sie bestimmte Enzyme künstlich ausschalteten, die die Zusammensetzung der Membranen beeinflussen.


Durch den Defekt sind in der Pflanze Zellen mit mehreren Zellkernen (rot) entstanden.

Ingo Heilmann (The EMBO Journal)

"Wir wollten so herausfinden, welche Membranbausteine für die Zellteilung wichtig sind und warum", erklärt Prof. Dr. Ingo Heilmann von der MLU.

Damit Pflanzen sich entwickeln können, müssen sich ihre Zellen teilen. Zuerst teilt sich in einer Zelle das Erbgut, das sich im Zellkern befindet. Aus den Erbguthälften bilden sich zwei neue, komplette Zellkerne.

Die weiteren Bestandteile der Zelle, zum Beispiel Chloroplasten und Mitochondrien, werden auf die beiden zukünftigen Tochterzellen aufgeteilt. All das passiert noch in der Mutterzelle. Erst danach beginnt die eigentliche Zellteilung, bei der eine neue Zellwand die Tochterzellen voneinander trennt.

Das Ganze kann man sich wie bei einer Baustelle vorstellen: Zuerst entsteht in der Mitte der Zelle ein vorläufiges Gerüst aus Proteinfasern, der sogenannte Phragmoplast. Diese Proteinfasern dienen wie Eisenbahnschienen als Orientierungshilfe für den Transport der Baumaterialien für die Zellwand.

Kleine Bläschen transportieren entlang der Schienen nach und nach neues Zellwandmaterial, das dann von einer komplexen Fusionsmaschinerie zu einer größeren Struktur verbunden wird.

Die so gebildete "Zellplatte" wächst ausgehend vom Zentrum der Zelle an ihren Rändern immer weiter, bis eine Zellwandscheibe die Tochterzellen schließlich komplett voneinander trennt.

"Damit das Ganze richtig funktioniert, müssen die Proteinfasern immer korrekt mit der Fusionsmaschinerie koordiniert werden, sonst kommen die Güterwagen mit dem Zellwandmaterial am falschen Ort oder zur falschen Zeit zur Baustelle und die Zellplattenbildung stoppt", erklärt Heilmann.

Seine Arbeitsgruppe konnte mit Hilfe biochemischer und zellbiologischer Experimente zeigen, dass PI4P, ein Membranbaustein, während der Zellteilung eine Doppelrolle spielt: PI4P steuert nicht nur die Aktivität der Fusionsmaschinerie, sondern dirigiert auch räumlich den Transport neuen Materials.

Die Forscher können in ihrer Arbeit erstmals zeigen, dass das Protein-Gerüst des Phragmoplasten durch den Einfluss von PI4P an den richtigen Stellen auf- und abgebaut wird. In normalen Pflanzen entstehen so regelmäßige Zellen, die perfekt zueinander passen und der Pflanze auch die nötige Stabilität geben.

Bei den mutierten Pflanzen konnten die Wissenschaftler dagegen starke Zellteilungsdefekte beobachten: Sie fanden vergrößerte Zellen mit mehreren Zellkernen, da die Trennung der Tochterzellen nicht geklappt hat.

Einige Zellen konnten sich nicht komplett teilen, das Zellgewebe war chaotisch aufgebaut und die Größenunterschiede zwischen einzelnen Zellen waren enorm. "So ein Gewebe ist nicht glücklich. Die gesamte Pflanze ist dadurch instabiler, kleinwüchsig und auch in ihrer Anpassung an Umweltreize beeinflusst", so Heilmann weiter.

Die Ergebnisse der halleschen Arbeitsgruppe helfen dabei, die Dynamik des sogenannten Zytoskeletts der Pflanzen aus Proteinfasern besser zu verstehen. Das Zytoskelett gibt nicht nur die Richtung zellulärer Transportprozesse während der Zellteilung vor, sondern dirigiert auch beim generellen pflanzlichen Wachstum.

Deshalb könnten die neuen Erkenntnisse der halleschen Forscher weitreichenden Einfluss haben, zum Beispiel bei der Einlagerung von Zellulose in pflanzliche Zellwände und somit bei der Biomasse- und Zellstoffproduktion. Allerdings muss dafür zunächst geprüft werden, ob sich die Ergebnisse auch auf andere Pflanzen übertragen lassen und wie sich die Aktivität der hier untersuchten Enzyme gezielt steuern lässt.

Die Studie wurde durch die Deutsche Forschungsgemeinschaft und ein Stipendium des Chinese Scholarship Council finanziert und in Kooperation mit dem Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben) durchgeführt.

Hinweis an die Redaktionen:
Zu dieser Pressemitteilung gibt es zusätzliches Bild- und Videomaterial. In der beigefügten ZIP-Datei finden Sie zwei Videos von der Zellteilung in der Ackerschmalwand. Ein Video zeigt den normalen Ablauf der Zellteilung, ein weiteres zeigt den gestörten Vorgang. Zusätzlich enthalten sind Aufnahmen von normalen und ungeordneten Zellen der Ackerschmalwand. Das Material finden Sie hier: https://cloud.uni-halle.de/s/32WD6FMbYR4CHNi

Originalpublikation:

Lin F. et al. A dual role for cell plate-associated PI4Kβ in endocytosis and phragmoplast dynamics during plant somatic cytokinesis. The EMBO Journal (2019). doi: 10.15252/embj.2018100303

Tom Leonhardt | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-halle.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik
13.07.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Wie die Venusfliegenfalle zuschnappt
13.07.2020 | Universität Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik

Mit einem Standard-Kryoelektronenmikroskop erzielen Biochemiker der Martin-Luther-Universität Halle-Wittenberg (MLU) erstaunlich gute Aufnahmen, die mit denen weit teurerer Geräte mithalten können. Es ist ihnen gelungen, die Struktur eines Eisenspeicherproteins fast bis auf Atomebene aufzuklären. Die Ergebnisse wurden in der Fachzeitschrift "PLOS One" veröffentlicht.

Kryoelektronenmikroskopie hat in den vergangenen Jahren entscheidend an Bedeutung gewonnen, besonders um die Struktur von Proteinen aufzuklären. Die Entwickler...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: Neue Schlankheitstipps für Computerchips

Lange Zeit hat man in der Elektronik etwas Wichtiges vernachlässigt: Wenn man elektronische Bauteile immer kleiner machen will, braucht man dafür auch die passenden Isolator-Materialien.

Immer kleiner und immer kompakter – das ist die Richtung, in die sich Computerchips getrieben von der Industrie entwickeln. Daher gelten sogenannte...

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik

13.07.2020 | Biowissenschaften Chemie

Gesucht: Die nächste Superbatterie

13.07.2020 | Energie und Elektrotechnik

Virtual Reality hilft bei Beurteilung der Mobilität von übermorgen

13.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics