Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellen verschicken Stoppschilder

04.07.2016

Eph-Rezeptoren und ihre Bindungspartner, die Ephrine, sind für die Zellkommunikation essentiell. Sie leiten junge Nervenzellen zu den richtigen Partnerzellen und spielen bei der Zellwanderung, Regeneration, neurodegenerativen Erkrankungen und der Krebsentwicklung eine wichtige Rolle. Bislang gingen Wissenschaftler davon aus, dass die Signalübertragung nur durch direkten Zell-zu-Zell-Kontakt möglich ist. Wissenschaftler am Max-Planck-Institut für Neurobiologie zeigen nun, dass Zellen Ephrine und Eph-Rezeptoren auch verpacken und verschicken können. Neben einem besseren Verständnis dieses Kommunikationssystems eröffnet die Entdeckung eventuell auch neue therapeutische Ansätze.

Der menschliche Körper enthält bis zu 100 Billionen Zellen. Diese Zellen wachsen, wandern, vermehren und bewegen sich. Dabei treten die Zellen mit unzähligen anderen Zellen in Kontakt und tauschen Informationen aus.


Membranständige Signalmoleküle können Nervenzellfortsätze auch über die Distanz hinweg zum Rückzug bewegen.

MPI für Neurobiologie / Gong

Diese Kommunikation erfolgt zum Beispiel über das Ephrin/Eph-Rezeptorsystem, das auf diese Weise die Zellwanderung und das Auswachsen von Nervenzellen steuern kann. Doch auch bei plastischen Prozessen wie Lernen und Regeneration, oder beim Krebswachstum und neurodegenerativen Erkrankungen spielt das Ephrin/Eph-System eine Rolle.

Eph-Rezeptoren und ihre Bindungspartner, die Ephrine, sitzen auf der Oberfläche fast aller Zellen. Treffen Ephrin und Eph-Rezeptor zweier Zellen aufeinander, bilden sie einen Ephrin/Eph-Komplex. Dadurch werden zelluläre Prozesse in einer oder beiden Zellen ausgelöst, die in den meisten Fällen zur Trennung des Komplexes und zur Abstoßung einer der beiden Zellen führt.

Die abgestoßene Zelle bewegt sich oder wächst dann in eine andere Richtung. Im Nervensystem lenken viele solcher Interaktionen die Fortsätze junger Nervenzellen zu den richtigen Zielorten.

„Es ist daher von grundlegender Bedeutung zu verstehen, wie Zellen über dieses System kommunizieren“, sagt Rüdiger Klein, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie Ephrine und Eph-Rezeptoren untersucht. Bisher schien sicher, dass Ephrin und Eph nur bei direktem Kontakt zweier Zellen einen Signalprozess auslösen können.

In letzter Zeit waren Ephrine und Eph-Rezeptoren jedoch auch in sogenannten Exosomen gefunden worden. Exosome sind kleine Fetttröpfchen, die von Zellen an ihre Umgebung abgegeben werden und zum Beispiel als Transportvehikel, Signalüberträger oder zur Ausscheidung von Zellbestandteilen dienen. "Dies hat die interessante Frage aufgeworfen, was Ephs und Ephrine in den Exosomen zu suchen haben", so Klein.

In einer aufwändigen Laborstudie haben die Martinsrieder Neurobiologen daher Exosome verschiedener Zelltypen, darunter auch Nervenzellen, aufgereinigt und den Inhalt analysiert. Sie konnten zeigen, dass Ephrine und Ephs in vielen dieser Exosome enthaltenen waren, und entschlüsselten den zellulären Mechanismus über den sie in die Exosome verpackt werden. Interessanterweise zeigte eine weitere Analyse, dass Eph-Rezeptoren nicht als Abfallprodukt in den Exosomen entsorgt wurden, sondern dort aktiv blieben: Auch Eph-Rezeptoren aus Exosomen konnten an Ephrin-Moleküle auf der Oberfläche auswachsender Nervenzellen binden und so das Zurückziehen der Zellfortsätze auslösen.

Dies belegt erstmals, dass Zellen auch über Distanzen hinweg Ephrine und Ephs als Signalgeber versenden können. "Das eröffnet eine ganze Reihe neuer Möglichkeiten", freut sich Rüdiger Klein. Unter anderem wurden Ephrine und Eph-Rezeptoren auch in den Exosomen von Krebszellen gefunden. "Es wäre daher denkbar, dass Strategien, die die Exosom-Ausschüttung steuern, auch die Ephrin-Eph-Signalkette unterbrechen und somit das Tumorwachstum stören könnten", so Klein.

ORIGINALVERÖFFENTLICHUNG
Jingyi Gong, Roman Körner, Louise Gaitanos, Rüdiger Klein
Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance
Journal of Cell Biology, 04. Juli 2016

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de

Prof. Dr. Rüdiger Klein
Abteilung "Moleküle – Signale – Entwicklung"
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3150
Email: rklein@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/klein/de - Die Abteilung von Prof. Rüdiger Klein

Dr. Stefanie Merker |

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Experimentelles Tumormodell offenbart neue Ansätze für die Immuntherapie bei Glioblastom-Patienten
18.02.2020 | Universitätsmedizin Mannheim

nachricht Kleber für gebrochene Herzen
18.02.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics