Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt

09.12.2016

Feldspatpartikel wirken in der Atmosphäre als Gefrierkeime, die in Wolken Eiskristalle wachsen lassen und Niederschläge ermöglichen. Warum das so ist, haben Forscher am Karlsruher Institut für Technologie (KIT) und am University College London (UCL) nun über elektronenmikroskopische Beobachtungen und molekulardynamische Computermodellierungen aufgeklärt: Als eigentlicher Eiskeim dient eine quasi versteckte Kristallfläche des Feldspats, die nur an Oberflächendefekten zutage tritt. Ihre für das Verständnis der Wolken- und Niederschlagsbildung wesentlichen Erkenntnisse präsentieren die Forscher im Magazin Science. (DOI: 10.1126/science.aai8034)

Rund 90 Prozent der Niederschläge über den Kontinenten hängen davon ab, dass sich in Wolken Eiskristalle bilden, die durch ihr zunehmendes Gewicht nach unten fallen. Aber das Wasser in den Wolken gefriert nur dann, wenn bestimmte Partikel vorhanden sind, an denen Eiskristalle wachsen können.


Eiskristalle auf einem Feldspatkristallit unter dem Elektronenmikroskop. Obwohl sie auf verschiedenen Ebenen des Feldspats wachsen, sind sie zueinander ausgerichtet.

Abbildung: Alexei Kiselev und Dagmar Gerthsen/KIT

Von allen Aerosolpartikeln, das heißt festen Schwebeteilchen in der Atmosphäre, sind allerdings nur wenige als Gefrierkeime wirksam. Diese seltenen Aerosolpartikeln bestimmen den Niederschlag auf der Erde entscheidend mit – umso wichtiger ist es zu verstehen, was sie gegenüber anderen Partikeln auszeichnet.

„Mit einem solchen Verständnis ließe sich besser vorhersagen, wie Eis- und Niederschlagsbildung in Wolken sich in Zukunft durch Klimawandel und Feinstaubbelastung verändern werden“, sagt Professor Thomas Leisner, Leiter des Instituts für Meteorologie und Klimaforschung – Atmosphärische Aerosolforschung (IMK-AAF) des KIT.

Wissenschaftlern des IMK-AAF ist es nun gemeinsam mit Forschern des Laboratoriums für Elektronenmikroskopie (LEM) des KIT sowie des University College London (UCL) gelungen, diese Frage für die wichtigste Klasse der anorganischen atmosphärischen Gefrierkeime zu klären, nämlich für Staubpartikel aus dem Mineral Feldspat.

Wie sie im Magazin Science berichten, kombinierten die Wissenschaftler elektronenmikroskopische Beobachtungen und molekulardynamische Computermodellierungen, um erstmals die atomare Natur dieses wichtigen anorganischen Gefrierkeims zu ermitteln.

Sie zeigten, dass das Eis auf den Feldspatkristalliten nicht auf den von außen zugänglichen Kristallflächen zu wachsen beginnt, sondern an mikroskopischen Defekten wie Stufen, Rissen und Vertiefungen. Obwohl diese Defekte zufällig über den gesamten Kristallit verteilt auftreten, zeigen alle Eiskristalle exakt die gleiche Orientierung in Bezug auf das Feldspat-Kristallgitter.

Aus dieser Beobachtung und aus umfangreichen Computersimulationen auf der molekularen Ebene leiteten die Wissenschaftler ab, dass eine ganz bestimmte Kristallfläche, die nur an Defekten auf der Oberfläche des Feldspat-Kristallits zugänglich wird, als eigentlicher Keim für das Eiswachstum dient.

„Feldspat ist einer der aktivsten atmosphärischen Gefrierkeime, aber der Grund dafür war unklar“, erklärt Professor Angelos Michaelides vom UCL. „Nun, da wir den aktiven Ort der Eisnukleation identifiziert haben, ist ein wichtiger Stein im Puzzle gefunden.” Die Forscher erwarten nun, dass ähnliche Untersuchungen die Eigenschaften weiterer Mineralien, die als Gefrierkeime wirken, aufklären können.

Alexei Kiselev, Felix Bachmann, Philipp Pedevilla, Stephen J. Cox, Angelos Michaelides, Dagmar Gerthsen and Thomas Leisner: Active sites in heterogeneous ice nucleation – the example of K-rich feldspars. Science, 2016. DOI: 10.1126/science.aai8034

Weiterer Kontakt:
Margarete Lehné, Pressereferentin, Tel.: +49 721 608-48121, Fax: +49 721 608-43658, E-Mail: margarete.lehne@kit.edu

Details zum KIT-Zentrum Klima und Umwelt: http://www.klima-umwelt.kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Form bleiben
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Intelligente Fluoreszenzfarbstoffe
16.08.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schatzkammer Datenbank: Digitalisierte Schwingfestigkeitskennwerte sparen Entwicklungszeit

16.08.2018 | Informationstechnologie

Interaktive Software erleichtert Design komplexer Gussformen

16.08.2018 | Informationstechnologie

Fraunhofer HHI entwickelt Quantenkommunikation für jedermann im EU-Projekt UNIQORN

16.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics