Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Antibiotikaresistenzen dank egoistischer genetischer Elemente überdauern

13.06.2019

Kieler Forschungsteam zeigt Mechanismen, mit denen Bakterien Behandlungsresistenzen auch ohne Selektionsdruck bewahren

Teile der Erbinformationen vieler Mikroorganismen liegen auf sogenannten Plasmiden vor. Dabei handelt es sich um genetische Elemente, die lediglich aus einem DNA-Ring bestehen und sich selbständig vervielfältigen können.


Tanita Wein untersuchte in ihrer Promotionsarbeit am Beispiel des Bakteriums Escherichia coli, wie sich Plasmide in Abwesenheit eines Selektionsdrucks entwickeln.

© Institut für Allgemeine Mikrobiologie, CAU


Einige der Autoren der neuen Forschungsarbeit: Prof. Tal Dagan (links), Tanita Wein und Dr. Nils Hülter vom Institut für Allgemeine Mikrobiologie an der CAU.

© Institut für Allgemeine Mikrobiologie, CAU

Die meisten Bakterien verfügen über solche Plasmide, da sie ihnen die Aufnahme neuer Erbinformationen ermöglichen. Dies geschieht durch den sogenannten horizontalen Gentransfer:

Bei diesem Prozess versorgen Plasmide Bakterienzellen mit neuem genetischen Material, auch über die Grenzen anderer Bakterienarten hinweg. Dies erlaubt es Bakterien, sich schnell und flexibel an geänderte Umweltbedingungen anzupassen, was insbesondere für bakterielle Krankheitserreger von Vorteil ist.

Allerdings sind Plasmide für den Wirtsorganismus nicht „umsonst“ verfügbar, da sie die Ressourcen der Wirtszellen mitnutzen, zum Beispiel zur Energieversorgung oder Reproduktion.

Bisher gingen Wissenschaftlerinnen und Wissenschaftler daher davon aus, dass Plasmide nur so lange von Bakterien beherbergt werden, wie sie ihnen einen evolutionären Vorteil verschaffen können. Ein Forschungsteam vom Institut für Allgemeine Mikrobiologie an der Christian-Albrechts-Universität zu Kiel (CAU) hat nun gemeinsam mit Kolleginnen und Kollegen von der israelischen Ben-Gurion-Universität des Negev nachgewiesen, dass dies nicht immer der Fall ist:

Am Beispiel des Modellorganismus Escherichia coli, einem zum Beispiel häufig im Darm verschiedener Wirbeltiere vorkommenden Bakterium, konnten die Wissenschaftlerinnen und Wissenschaftler im Rahmen einer Forschungsarbeit des Kiel Evolution Center (KEC) zeigen, dass Plasmide in Bakterien permanent überdauern können, ohne dass der Wirt zunächst einen konkreten Nutzen daraus zieht.

Langfristig bewahren sie sich damit aber das Potenzial für schnelle evolutionäre Anpassungen bei veränderlichen Umweltbedingungen. Ihre Ergebnisse veröffentlichten die Kieler Forschenden heute in der renommierten Fachzeitschrift Nature Communications.

Wie Plasmide ohne Selektionsdruck überdauern

Normalerweise sorgt der sogenannte positive Selektionsdruck dafür, dass sich bestimmte für den Wirt vorteilhafte Funktionen des Plasmids durchsetzen. Ein solcher äußerer Anpassungsdruck wäre zum Beispiel die Gabe eines Antibiotikums. Hier profitiert das Bakterium von den in den Plasmiden enthaltenen Resistenzgenen und kann mit ihrer Hilfe eine Unempfindlichkeit gegen den antibakteriellen Wirkstoff entwickeln.

Bis jetzt wurde angenommen, dass Plasmide aber auch eine Belastung für die Bakterienzelle darstellen und daher nur vorhanden sind, so lange sie gebraucht werden. Wenn Bakterien den Antibiotika nicht mehr ausgesetzt sind und damit der Selektionsdruck entfällt, sollten die Plasmide theoretisch langsam verloren gehen und ganz aussterben.

Da überall diverse Plasmide in großer Zahl in der Natur vorkommen, kann diese Annahme so jedoch nicht zutreffen. Um herauszufinden, was tatsächlich mit Plasmiden ohne Selektion - also die Antibiotikagabe - passiert, haben die Kieler Forschenden ein Evolutionsexperiment durchgeführt. Dazu beobachteten sie das Bakterium Escherichia coli über den Verlauf von insgesamt 1.000 Generationen.

Sie untersuchten, wie sich dabei ein bestimmtes, bislang wenig untersuchtes, aber in zahlreichen bakteriellen Wirten auftretendes Plasmid in Abwesenheit eines solchen Selektionsdrucks verhält - der Wirt also keinen funktionalen Vorteil aus seiner Existenz ziehen kann.

„Unsere Forschungsergebnisse zeigen, dass die Häufigkeit der Plasmide ohne Antibiotika zwar abnimmt, sie aber auf einem niedrigen und stabilen Niveau überdauern können“, erklärt Tanita Wein, Doktorandin in der Arbeitsgruppe Genomische Mikrobiologie an der CAU und Erstautorin der Studie. „Mit diesen Erkenntnissen liefern wir einen neuen, evolutionären Erklärungsansatz für das allgegenwärtige Vorkommen der Plasmide in der Natur“, so Wein weiter.

Des einen Freud, des anderen Leid

Um zusätzlich den Einfluss der Umweltbedingungen auf das Überdauern der Plasmide zu untersuchen, verglichen die Forschenden die Auswirkungen verschiedener Umgebungstemperaturen: auf der einen Seite die für das Gedeihen des Wirtsbakteriums optimale Temperatur von 37° Celsius, auf der anderen Seite Stress auslösende Bedingungen von nur 20° Celsius.

Die Ergebnisse des Experiments zeigten, dass bei der kühlen Temperatur die Plasmiden-Häufigkeit langsamer zurückging als im von den Bakterien bevorzugten Temperaturbereich. Das Überdauern der Plasmide in den Bakterien hängt also nicht nur von der positiven Selektion bestimmter Funktionen ab, sondern ist zusätzlich stark von den Umweltbedingungen geprägt.

„Wir konnten zeigen, dass gerade die für das Bakterium nachteiligen Bedingungen vorteilhaft für das Überdauern der Plasmide sein können, da sie sich dann möglicherweise effizienter reproduzieren“, betont die Mikrobiologin Wein. Das Überdauern der Plasmide sei also möglicherweise ein Prozess, der auch intrinsisch gesteuert ist und nicht notwendigerweise im Zusammenhang mit einem Vorteil für den Gesamtorganismus stehe, erklärt Wein.

Besseres Verständnis der schnellen Resistenzverbreitung

Einen weiteren wichtigen Aspekt entdeckten die Kieler Forschenden, die auch vom DFG-Schwerpunktprogramm (SPP) 1819 „Schnelle Evolutionäre Anpassung“ unterstützt werden, als sie die Bakterien im Anschluss an das Experiment ohne Selektionsdruck doch einem Antibiotikum aussetzten. Auch die einmalige Gabe bewirkt, dass alle nachfolgenden Bakteriengenerationen zu 100 Prozent resistent gegenüber dem Wirkstoff werden.

Man spricht in diesem Fall von einem „evolutionären Flaschenhals“, durch den bildlich gesprochen nur die unempfindlichen Individuen hindurchgelangen. Damit zeigen die neuen Forschungsergebnisse, dass das stabile Überdauern der Plasmide im Laufe der Evolution dazu führen kann, dass die Antibiotika-Resistenz eines Bakteriums latent vorhanden bleibt, auch wenn dieses zuvor nicht mit den Wirkstoffen in Kontakt gekommen ist.

„Unsere am Beispiel von Escherichia coli gewonnenen Erkenntnisse bieten also vielversprechende Forschungsansätze, um die Rolle der Plasmide bei der schnellen Anpassung verschiedener Bakterien an wechselnde Umweltbedingungen in Zukunft besser zu verstehen“, fasst Professorin Tal Dagan, KEC-Mitglied und Leiterin der Arbeitsgruppe Genomische Mikrobiologie, zusammen.

Über das KEC
Das Kiel Evolution Center (KEC) als interaktive Wissenschaftsplattform an der Christian-Albrechts-Universität zu Kiel (CAU) setzt sich zum Ziel, Evolutionsforscherinnen und -forscher in der Region Kiel besser zu koordinieren. Daneben sollen unter dem Schlüsselbegriff „Translationale Evolutionsforschung“ gezielt Brücken zwischen Grundlagenforschung und Anwendung geschlagen werden. Neben der Förderung der Wissenschaft stehen ausdrücklich auch Lehre und Öffentlichkeitsarbeit im Fokus des Kiel Evolution Center. Daran beteiligt sind neben der CAU auch Forschende vom GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, dem Max-Planck-Institut für Evolutionsbiologie in Plön (MPI-EB) und dem Forschungszentrum Borstel (FZB), Leibniz-Zentrum für Medizin und Biowissenschaften.

Fotos stehen zum Download bereit:

https://www.uni-kiel.de/fileadmin/user_upload/pressemitteilungen/2019/190-wein-n...
Bildunterschrift: Tanita Wein untersuchte in ihrer Promotionsarbeit am Beispiel des Bakteriums Escherichia coli, wie sich Plasmide in Abwesenheit eines Selektionsdrucks entwickeln.
© Institut für Allgemeine Mikrobiologie, CAU

https://www.uni-kiel.de/fileadmin/user_upload/pressemitteilungen/2019/190-wein-n...
Bildunterschrift: Einige der Autoren der neuen Forschungsarbeit: Prof. Tal Dagan (links), Tanita Wein und Dr. Nils Hülter vom Institut für Allgemeine Mikrobiologie an der CAU
© Institut für Allgemeine Mikrobiologie, CAU

Pressekontakt:
Christian Urban
Wissenschaftskommunikation „Kiel Life Science", CAU Kiel:
Tel.: 0431-880-1974
E-Mail: curban@uv.uni-kiel.de

Weitere Informationen:
AG Genomische Mikrobiologie,
Institut für Allgemeine Mikrobiologie, CAU Kiel:
https://www.mikrobio.uni-kiel.de/de/ag-dagan

Forschungszentrum „Kiel Evolution Center“, CAU Kiel:
https://www.kec.uni-kiel.de

Schwerpunktprogramms (SPP) 1819 „Schnelle Evolutionäre Anpassung“, Universität Hohenheim:
https://dfg-spp1819.uni-hohenheim.de/startseite

Wissenschaftliche Ansprechpartner:

Tanita Wein
AG Genomische Mikrobiologie,
Institut für Allgemeine Mikrobiologie
E-Mail: twein@ifam.uni-kiel.de

Prof. Tal Dagan
Leiterin AG Genomische Mikrobiologie,
Institut für Allgemeine Mikrobiologie, CAU Kiel
E-Mail: tdagan@ifam.uni-kiel.de
Tel.: 0431-880-5712

Originalpublikation:

Tanita Wein, Nils F. Hülter, Itzhak Mizrahi, Tal Dagan (2019): Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance Nature communications
Published on 13 June 2019 https://doi.org/10.1038/s41467-019-10600-7

Weitere Informationen:

https://www.mikrobio.uni-kiel.de/de/ag-dagan
https://www.kec.uni-kiel.de
https://dfg-spp1819.uni-hohenheim.de/startseite

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Versteckte Dynamik in neuronalen Netzwerken entdeckt
16.07.2019 | Forschungszentrum Jülich

nachricht Internationales Forschungsteam entwickelt Programm zur Vorhersage neuer Wirkstoffe
16.07.2019 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryozyten als „Türsteher“ und Regulatoren der Zellmigration im Knochenmark

In einer neuen Studie zeigen Wissenschaftler der Universität Würzburg und des Universitätsklinikums Würzburg, dass Megakaryozyten als eine Art „Türsteher“ auftreten und so die Eigenschaften von Knochenmarksnischen und die Dynamik der Zellmigration verändern. Die Studie wurde im Juli im Journal „Haematologica“ veröffentlicht.

Die Hämatopoese ist der Prozess der Bildung von Blutzellen, der überwiegend im Knochenmark auftritt. Das Knochenmark produziert alle Arten von Blutkörperchen:...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet

Supraleitende Hochfrequenzkavitäten können Elektronenpakete in modernen Synchrotronquellen und Freien Elektronenlasern mit extrem hoher Energie ausstatten. Zurzeit bestehen sie aus reinem Niob. Eine internationale Kooperation hat nun untersucht, welche Vorteile eine Beschichtung mit Niob-Zinn im Vergleich zu reinem Niob bietet.

Zurzeit ist Niob das Material der Wahl, um supraleitende Hochfrequenzkavitäten zu bauen. So werden sie für Projekte wie bERLinPro und BESSY-VSR eingesetzt,...

Im Focus: Künstliche Intelligenz löst Rätsel der Physik der Kondensierten Materie: Was ist die perfekte Quantentheorie?

Für einige Phänomene der Quanten-Vielteilchenphysik gibt es mehrere Theorien. Doch welche Theorie beschreibt ein quantenphysikalisches Phänomen am besten? Ein Team von Forschern der Technischen Universität München (TUM) und der amerikanischen Harvard University nutzt nun erfolgreich künstliche neuronale Netzwerke für die Bildanalyse von Quantensystemen.

Hund oder Katze? Die Unterscheidung ist ein Paradebeispiel für maschinelles Lernen: Künstliche neuronale Netzwerke können darauf trainiert werden Bilder zu...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auswandern auf Terra-2?

15.07.2019 | Veranstaltungen

Hallo Herz! Wie kommuniziert welches Organ mit dem Herzen?

12.07.2019 | Veranstaltungen

Schwarze Löcher und unser Navi im Kopf: Wissenschaftsshow im Telekom Dome in Bonn

11.07.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Versteckte Dynamik in neuronalen Netzwerken entdeckt

16.07.2019 | Biowissenschaften Chemie

Fraunhofer: What’s next?

16.07.2019 | Messenachrichten

GFOS auf der Zukunft Personal Europe: Workforce Management weitergedacht

16.07.2019 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics