Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Magic Mushrooms blau machen

29.01.2020

Jenaer Wissenschaftler klären die Blaufärbung magischer Pilze nach Verletzung auf

Psilocybin heißt der stark halluzinogene Stoff, der den Magic Mushrooms ihre Wirkung verleiht. Seit seiner Entdeckung fragen sich Wissenschaftlerinnen und Wissenschaftler, warum die Pilze der Gattung Psilocybe ihn bilden. Das Team um den Jenaer Professor Dirk Hoffmeister untersuchte die blaue Verfärbung des Pilzes nach einer Verletzung und lieferte dabei eine Erklärung für die Bildung von Psilocybin, wie es im renommierten Fachjournal „Angewandte Chemie“ berichtet.


Der kubanische Kahlkopf, Psilocybe cubensis, verfärbt sich durch eine Verletzung an der Unterseite blau. Er war Teil der zugrundeliegenden Untersuchungen.

Quelle: Felix Blei


Auch der bläuende Kahlkopf, Psilocybe cyanescens, reagiert bei Verwundung mit einer blauen Verfärbung. Er trägt die Farbe bereits im Namen.

Quelle: Dirk Hoffmeister

Vorgänge in der Natur sind immer sehr ökonomisch. So bilden auch Pilze ausschließlich Substanzen, die ihnen Vorteile verschaffen. Aus Sicht der Evolution ist es deshalb sehr unwahrscheinlich, dass Pilze Psilocybin bilden, um die menschliche Psyche zu beeinflussen. Einerseits gab es den Pilz schon lange vor dem Menschen, zum anderen profitiert der Pilz nicht von geänderten Bewusstseinszuständen des Menschen.

Psilocybin und seine Faszination für Chemiker

Werden Pilze der Gattung Psilocybe verletzt, färben sich die Fruchtkörper an den verwundeten Stellen innerhalb kurzer Zeit tief blau. Der Naturstoff Psilocybin spielt bei dieser Reaktion eine entscheidende Rolle. Dirk Hoffmeister ist Professor am Institut für Pharmazie der Friedrich-Schiller-Universität Jena und leitet eine assoziierte Forschungsgruppe am Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie – Hans-Knöll-Institut – (Leibniz-HKI).

„Psilocybin hat für einen Naturstoff eine sehr ungewöhnliche Struktur“, so Hoffmeister. Er beschäftigt sich schon länger intensiv mit der Substanz, die künftig zur Behandlung von Depressionen eingesetzt werden soll. Psilocybin ist die inaktive Vorstufe der hochreaktiven Substanz Psilocin. Sie ruft letztendlich die psychedelische Wirkung in unserem Nervensystem hervor.

Hoffmeister erklärt: „Der Pilz nutzt zur Stabilisierung von Psilocin eine ungewöhnliche und energieaufwendige Methode: Er bildet einen Phosphatester, das bekannte Psilocybin. Die Phosphatgruppe agiert wie eine Schutzkappe und stellt das Molekül ruhig.“

Aufgrund dieser speziellen Struktur sind Psilocybin-haltige Pilze in der Lage, die schützende Kappe bei einer Störung der Zellstruktur blitzschnell wieder zu entfernen. Damit destabilisieren sie die ruhig gestellte Vorstufe innerhalb kürzester Zeit.

Was steckt hinter der Blaufärbung?

Naturstoff-Chemiker Claudius Lenz ist Doktorand der „International Leibniz Research School“ und Erstautor der Studie. Er fand heraus, dass bei einer Verletzung eine Kettenreaktion in Gang gesetzt wird: Nach Abspaltung der Phosphatgruppe bildet das entstehende Psilocin durch vielfache Verknüpfung und Vernetzung mit weiteren Psilocin-Molekülen eine Gruppe größerer Moleküle, sogenannte Polymere.

Aufgrund ihrer besonderen chemischen Struktur sind die Polymere intensiv blau gefärbt. „Ein wüstes Gemisch“, ergänzt Hoffmeister. „Das passiert genau in dem Moment der Verwundung außergewöhnlich schnell und auch nur an dieser Stelle. Die Pilze sind aufgrund dieser ungewöhnlichen Struktur von Psilocybin sozusagen ständig in Alarmbereitschaft“, führt der Jenaer Naturstoff-Forscher begeistert aus.

Der blaue Farbstoff bindet an Proteine und fällt sie in Form von Flocken aus. Damit könnte er Gegnern des Pilzes gefährlich werden, wenn sie ihn verletzen. Die Forschungsgruppe liefert damit ein wichtiges Argument für die Überlegung, dass das halluzinogene Psilocybin nur die Zutat ist, um ein Polymer zur Verteidigung herzustellen.

Das Forschungsprojekt wurde im Rahmen des Jenaer Sonderforschungsbereichs „ChemBioSys“ erzielt, in dem die Bildung und Funktion von mikrobiellen Naturstoffen in komplexen Ökosystemen untersucht wird. Die Arbeit verdeutlicht die enge und synergetische Vernetzung der Jenaer Wissenschaft: Mittels chemischer Methoden klären die Forscherteams biologische Fragestellungen auf.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Dirk Hoffmeister

Pharmazeutische Mikrobiologie, Friedrich-Schiller-Universität Jena

Abteilungsleiter Pharmazeutische Mikrobiologie, Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie

dirk.hoffmeister@leibniz-hki.de
03641 949850

Originalpublikation:

Originalpublikation
Lenz C, Wick J, Braga D, Garcia-Altares M, Lackner G, Hertweck C, Gressler M, Hoffmeister D (2019) Injury-triggered blueing reactions of Psilocybe "magic" mushrooms. Angew Chem Int Ed, DOI: 10.1002/anie.201910175.

Dr. Michael Ramm | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://www.leibniz-hki.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen
21.02.2020 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics