Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Elektronen Walzer tanzen

20.02.2018

Rechts- und linkshändige Moleküle lassen sich mit Hilfe kurzer Laserpulse auseinanderhalten

Die Identifikation rechts- und linkshändiger Moleküle ist entscheidend für viele Anwendungen in der Chemie und Pharmazie. Ein internationales Forscherteam (CELIA-CNRS/INRS/Max-Born-Institut/SOLEIL) hat nun ein neues originelles und hochempfindliches Verfahren vorgestellt, mit dem sich die Händigkeit von Molekülen um ein Vielfaches besser bestimmen lässt als mit bisherigen Methoden.


Durch einen ultrakurzen, zirkular polarisierten Laserpuls folgen die Elektronen einer spiralförmigen Rechts- oder Linksdrehung, die von der Händigkeit der Moleküle abhängt.

Samuel Beaulieu

Mit Hilfe extrem kurzer Laserpulse bringen die Forscher Elektronen in Molekülen zum Schwingen und können so den Drehsinn der Moleküle bestimmen. Die Forschungsergebnisse sind in „Nature Physics“ erschienen.

Nicht nur beim Menschen ist die Frage wichtig, ob jemand Rechts- oder Linkshänder ist. Je nachdem, mit welcher Hand wir etwas greifen, umschließen unsere Finger ein Objekt im Uhrzeigersinn oder gegen ihn. Auch in der Welt der Moleküle ist die Händigkeit von großer Bedeutung.

Bei Molekülen ist die Eigenschaft, eine bevorzugte Händigkeit zu haben, sogar noch viel wichtiger als beim Menschen: Denn bestimmte Substanzen können je nachdem, ob sie rechts- oder linkshändig vorliegen, entweder giftig oder heilsam sein. Manche Medikamente dürfen deshalb nur entweder links- oder rechtshändige Moleküle enthalten.

Das Problem dabei liegt darin, rechts- und linkshändige Moleküle, die sonst völlig identisch sind, nach ihrem „Chiralität“ genannten Drehsinn zu identifizieren und zu trennen. Denn außer bei Kontakt mit einem anderen chiralen Stoff verhalten sie sich völlig gleich. Ein internationales Forscherteam hat nun ein neues Verfahren entwickelt, mit dem sich die Händigkeit von Molekülen mit extremer Empfindlichkeit bestimmen lässt.

Seit dem 19. Jahrhundert ist bekannt, dass Moleküle in unterschiedlicher Händigkeit vorliegen können. Bekanntestes Beispiel ist das Erbgut, wie etwa menschliche DNA, dessen Struktur einem rechtsdrehenden Korkenzieher entspricht. Zur Bestimmung der Händigkeit nutzt man üblicherweise sogenannte zirkular polarisierte Lichtstrahlen, die entweder rechts- oder linksdrehende elektromagnetische Felder aufweisen – wie ein Korkenzieher entlang der Ausbreitungsachse gewickelt. Dieses chirale Licht wird etwas besser oder schlechter absorbiert, wenn es auf Moleküle mit gleichem oder umgekehrtem Drehsinn trifft. Der Effekt ist jedoch klein, da die Wellenlänge von Licht sehr viel größer ist als die atomaren Abstände in Molekülen. Das Licht „spürt“ den Drehsinn der Moleküle also nur ganz schwach.

Mit der neuen Methode lässt sich das Signal aber enorm verstärken. „Der Trick besteht darin, die Moleküle mit einem sehr kurzen Laserpuls zu bestrahlen“, sagt Prof. Olga Smirnova, Leiterin der Theoriegruppe am Max-Born-Institut. Solch ein Puls ist nur rund eine zehntel billionstel Sekunde lang und überträgt Energie auf die Elektronen im Molekül. Das regt sie für kurze Zeit zu Schwingungen an. Da sich die Elektronen in der rechts- oder linkshändigen Struktur des Moleküls befinden, nimmt auch ihre Schwingung diesen Drehsinn an.

Die Schwingung lässt sich dann mit einem zweiten Laserpuls auslesen. Dieser Puls muss ebenfalls kurz sein, um die Richtung der Elektronenbewegung registrieren zu können. Er hat so viel Energie, dass er die angeregten Elektronen aus dem Molekül herausschlägt. Je nachdem, ob die Elektronen rechts- oder linkshändig orientierte Schwingungen vollführten, fliegen sie dann entweder in Richtung des Laserstrahls aus dem Molekül oder in umgekehrter Richtung.

Bei Experimenten am „Centre for Intense Lasers and Applications“ (CELIA) der Universität Bordeaux konnte auf diese Weise sehr effizient die Händigkeit der Moleküle bestimmt werden, und zwar mit einem 10.000-fach stärkeren Signal als mit der üblicherweise genutzten Methode. Außerdem lassen sich so chirale chemische Reaktionen einleiten und über die Zeit verfolgen. Das Kunststück besteht darin, sehr kurze Laserpulse mit der passenden Frequenz bereitzustellen. Diese Technologie stammt aus der physikalischen Grundlagenforschung und ist erst seit Kurzem verfügbar. Sie könnte sich für andere Bereiche als äußerst hilfreich erweisen, bei denen die Händigkeit von Molekülen eine Rolle spielt, etwa für die chemische und pharmazeutische Forschung.

Da die Identifikation der Händigkeit von Molekülen mit der neuen Methode gelungen ist, denken die Wissenschaftlerinnen und Wissenschaftler bereits darüber nach, auch ein Laser-Trennverfahren für rechts- und linkshändige Moleküle zu entwickeln.

Text: Dirk Eidemüller / Forschungsverbund Berlin e.V.

Originalveröffentlichung:
S. Beaulieu, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Géneaux, A. G. Harvey, F. Légaré, Z. Mašín, L. Nahon, A. F. Ordonez, S. Petit, B. Pons, Y. Mairesse, O. Smirnova and V. Blanchet: Photoexcitation Circular Dichroism in Chiral Molecules, Nature Physics, 19 February 2018 (online), DOI: 10.1038/s41567-017-0038-z

Kontakt PR:
Stéphanie Thibault, Communications Advisor, INRS, stephanie.thibault@inrs.ca, Tel. +1 514 / 499-6612 (Montreal, Kanada)
Anja Wirsing, Pressereferentin, Forschungsverbund Berlin e.V., wirsing@fv-berlin.de, Tel. 030 / 6392-3337

Kontakt Wissenschaft:
Samuel Beaulieu, beaulieus@emt.inrs.ca (Bordeaux, Frankreich)
Olga Smirnova, olga.smirnova@mbi-berlin.de, Tel. 030 / 6392-1340

Gemeinsame Pressemitteilung: Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) im Forschungsverbund Berlin e.V. | Centre for Intense Lasers and Applications (CELIA) / Universität Bordeaux | French National Center for Scientific Research (CNRS) | French Alternative Energies and Atomic Energy Commission (CEA) | L'Institut national de la recherche scientifique (INRS), Kanada | Synchrotron SOLEIL, Frankreich

Weitere Informationen:

https://www.nature.com/articles/s41567-017-0038-z

Dipl.-Geogr. Anja Wirsing | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics