Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Bakterien Häuser bauen

07.05.2018

Biofilme sind schleimartige Schichten an Grenzflächen, in denen Mikroorganismen hausen und widrigen Umweltbedingungen trotzen. Das Bakterium Bacillus subtilis baut diese Schutzhütten mit einer bisher unbekannten Strategie, wie ein Team um die Berliner Forscherinnen Anne Diehl vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) und Yvette Roske vom Max-Delbrück-Centrum für Molekulare Medizin (MDC) im Fachblatt PNAS berichtet.

Der wichtigste Baustein des Biofilms - das Protein TasA - wird überraschenderweise bereits im Zellinneren vorgeformt. Gelangt TasA nach außen, bilden diese Bausteine längere Ketten, sogenannte Fibrillen, die wie ein Grundgerüst bzw. Mauern den Biofilm stabilisieren.


Bacillus subtilis Fibrillen Bildung erfolgt nach TasA-Export (i, ii) bzw. wenn gereinigtes TasA einer tasA Mutante in einem Rekonstitutionsexperiment (iii) zugeführt wird.

Barth van Rossum, FMP

Biofilme können auch für den Menschen eine Gefahr darstellen, da sie Krankheitserregern Schutz vor den Waffen des Immunsystems und Antibiotika bieten. Um die Ausbildung von Biofilmen zu hemmen und die Wirksamkeit von Antibiotika zu garantieren, ist es notwendig, die Struktur der Bausteine zu kennen.

TasA ist ein überraschend dynamisches Protein

Auf Anregung des B. subtilis-Experten Kürşad Turgay von der Universität Hannover haben die Berliner Forscherinnen die molekulare Struktur des wichtigsten Proteins in diesem Biofilm, TasA, nun gelöst. Anne Diehl aus der von Hartmut Oschkinat geleiteten Abteilung „NMR-unterstützte Strukturforschung“ des FMP startete mit der Produktion von TasA und studierte die verschiedenen Erscheinungsformen des Proteins, die leicht ineinander übergehen.

Dabei tat sich dafür eine unerwartete Hürde auf: "Ich habe in den 32 Jahren meiner Berufstätigkeit auf dem Gebiet der Proteinstrukturforschung noch nie mit einem so dynamischen Protein gearbeitet. Bereits nach kurzer Zeit lagern sich die löslichen TasA-Proteine zusammen und erzeugen einen Gelee-artigen Zustand“, so Anne Diehl im Rückblick auf die erfolgreiche Charakterisierung der einzelnen Zustände.

Ein robuster Kern mit flexiblen Schlaufen

Einen möglichen Grund fand Yvette Roske aus der Abteilung „Makromolekulare Strukturen und Interaktionen“ des MDC, geleitet von Udo Heinemann. Ausgehend von frisch gereinigtem TasA züchtete sie Kristalle, analysierte diese mittels hochenergetischer Röntgenstrahlung am BESSY in Berlin-Adlershof und entschlüsselte so die dreidimensionale Faltung des Proteins.

„Es zeigte sich, dass die Struktur von TasA in weiten Bereichen hoch geordnet ist. Ein großer Anteil an ß-Faltblatt-Elementen verleiht dem Protein einen robusten Kern, der jedoch mit flexiblen Schlaufen dekoriert ist", fasst Yvette Roske ihre Erkenntnisse zusammen.

Interessanterweise gehört die Aminosäure Arginin nicht zu den Bestandteilen von TasA. Durchschnittlich bestehen Proteine zu 10 % aus dieser basischen Aminosäure, das ist doppelt so viel, wie eine statistische Verteilung aller 20 vorkommender Aminosäuren erwarten lässt. „Dass ein Protein gänzlich auf diesen Grundbaustein verzichtet, muss einen Grund haben", erläutert Anne Diehl.

Arginin dient häufig als Ansatzpunkt für Proteasen - Enzyme, die andere Proteine zerschneiden. Die Abwesenheit von Arginin erklärt möglicherweise die außerordentliche Stabilität von TasA gegenüber Proteasen und macht dieses Protein damit zu einem robusten Stützpfeiler des schützenden Biofilms.

TasA könnte erklären, warum Bacillus subtilis nicht pathogen ist

Dabei ähnelt die Aminosäureabfolge in TasA einer Protease mit Namen Camelysin, die viele pathogene Bacillus-Stämme an Stelle von TasA als Grundgerüst für ihre Biofilme nutzen. Die Struktur von TasA erlaubte daher die Konstruktion eines Modells für Camelysin.

"Unser Strukturmodell für Camelysin zeigt, dass die dreidimensionale Faltung der beiden Proteine mit hoher Wahrscheinlichkeit sehr ähnlich ist", sagt Yvette Roske. Doch während das Camelysin des Milzbrand-Erregers B. anthracis eine Protease ist, fehlt dem TasA des harmlosen B. subtilis diese Eigenschaft. TasA scheint im Laufe der Evolution diese enzymatische Aktivität und damit seine Pathogenität verloren zu haben.

Die Erforschung der Biofilme geht nun in die nächste Phase. Mit Hilfe der Festkörper-NMR konnten die Teams vom FMP und MDC bereits zeigen, dass sich zuvor ungeordnete flexible Teile von TasA neu ausrichten, wenn sich die Bausteine zu Fibrillen zusammenlagern. Weitere Untersuchungen der Fibrillen sollen dazu beitragen, die Stabilität der Biofilme besser zu verstehen und vielleicht sogar neue Ansätze im Kampf gegen Krankheitserreger zu finden.

Quelle:
Anne Diehl, Yvette Roske, Linda Ball, Anup Chowdhury, Matthias Hiller, Noel Molière, Regina Kramer, Daniel Stöppler, Catherine L. Worth, Brigitte Schlegel, Martina Leidert, Nils Cremer, Natalja Erdmann, Daniel Lopez, Heike Stephanowitz, Eberhard Kraus, Barth-Jan van Rossum, Peter Schmieder, Udo Heinemann, Kürşad Turgay, Ümit Akbey, and Hartmut Oschkinat. Structural changes of TasA in biofilm formation of Bacillus subtilis, PNAS 12. März 2018, DOI 10.1073/pnas.1718102115

Bildunterschrift (ausführlich):
Bacillus subtilis Fibrillen Bildung erfolgt nach TasA-Export (i, ii) bzw. wenn gereinigtes TasA einer tasA Mutante in einem Rekonstitutionsexperiment (iii) zugeführt wird. In allen Fällen, insbesondere jedoch bei (iii) wird eine unterstützende Funktion von TapA und Exopolysacchariden (nicht dargestellt) erwartet.

Kontakt:
Prof. Dr. Hartmut Oschkinat
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
oschkinat@fmp-berlin.de
Tel. +49 30 94793-160
www.leibniz-fmp.de/oschkinat

Dr. Anne Diehl
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
diehl@fmp-berlin.de
Tel. +49 30 94793-310

Öffentlichkeitsarbeit
Silke Oßwald
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
osswald@fmp-berlin.de
Tel. +49 30 94793-104

Das Leibniz-Institut für Molekulare Pharmakologie (FMP) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.900 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Weitere Informationen:

http://www.pnas.org/content/early/2018/03/07/1718102115
http://www.leibniz-fmp.de/oschkinat

Dipl.-Geogr. Anja Wirsing | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemiker lassen Bor-Atome wandern
17.01.2020 | Westfälische Wilhelms-Universität Münster

nachricht Infektiöse Proteine bei Alzheimer
17.01.2020 | Klinikum der Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik

Um den Transfer von Forschungsentwicklungen aus dem Bereich der Quantensensorik in industrielle Anwendungen voranzubringen, entsteht am Fraunhofer IAF ein Applikationslabor. Damit sollen interessierte Unternehmen und insbesondere regionale KMU sowie Start-ups die Möglichkeit erhalten, das Innovationspotenzial von Quantensensoren für ihre spezifischen Anforderungen zu evaluieren. Sowohl das Land Baden-Württemberg als auch die Fraunhofer-Gesellschaft fördern das auf vier Jahre angelegte Vorhaben mit jeweils einer Million Euro.

Das Applikationslabor wird im Rahmen des Fraunhofer-Leitprojekts »QMag«, kurz für Quantenmagnetometrie, errichtet. In dem Projekt entwickeln Forschende von...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: Wie Zellen ihr Skelett bilden

Wissenschaftler erforschen die Entstehung sogenannter Mikrotubuli

Zellen benötigen für viele wichtige Prozesse wie Zellteilung und zelluläre Transportvorgänge strukturgebende Filamente, sogenannte Mikrotubuli.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2020

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemiker lassen Bor-Atome wandern

17.01.2020 | Biowissenschaften Chemie

Infektiöse Proteine bei Alzheimer

17.01.2020 | Biowissenschaften Chemie

Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

17.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics