Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weniger ist mehr: Verlust von Genen während der Evolution

04.04.2018

Umfassende Analyse von Genverlusten eröffnet neue Erkenntnisse zu evolutionären Eigenschaften von Säugetieren

Die Artenvielfalt ist einer der faszinierendsten Aspekte der Natur. Alle Lebensräume auf unserem Planeten, sei es zu Land, zu Wasser oder in der Luft, sind von Tierarten bewohnt, die sich auf erstaunliche Art und Weise an ihre Umwelt angepasst haben. Ein Vergleich der Gene zwischen verschiedenen Spezies kann Aufschluss darüber geben, wie sich diese Artenvielfalt entwickeln konnte.


Fledermaus an einer Futterstation.

Renato Recoder

Im Laufe der Evolution können entweder neue Gene entstehen, oder sie mutieren, werden dupliziert oder können sogar verloren gehen. Um zu klären, inwieweit Genverluste zu den verschiedensten Anpassungen beitragen können, entwickelten Michael Hiller und seine Kollegen vom Max-Planck-Institut für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden eine computergestützte Methode zur Bestimmung von Genverlusten.

Die Forscher untersuchten systematisch die Genome von 62 Säugetieren, um zu analysieren, welche Gene in welcher Art verloren gehen. Ihre Ergebnisse, die in der Fachzeitschrift Nature Communications veröffentlicht wurden, zeigen eine Reihe von bisher unbekannten Genverlusten, die als Folge einer früheren, schon bestehenden Anpassung aufgetreten sein könnten oder - noch interessanter - eine wichtige Rolle bei der Entwicklung einer neuen morphologischen oder physiologischen Anpassung gespielt haben könnten.

Der Verlust von Genen wird in der Regel als nachteilig erachtet, da er mit Fehlentwicklungen oder Krankheiten verbunden ist. Allerdings kann der Verlust von Genen aber auch von Vorteil für ein Lebewesen sein, zum Beispiel, wenn dieser Verlust zur Anpassung an bestimmte Umweltbedingungen oder neue Lebensbedingungen beiträgt.

Eines der vielen Beispiele, welche die Forscher um Michael Hiller, der auch mit dem Max-Planck-Institut für Physik komplexer Systeme und dem Zentrum für Systembiologie Dresden zusammenarbeitet, untersucht haben, ist der komplette Verlust von Haaren und Fell bei Delphinen und Walen. Bei diesen Arten, die ausschließlich im Wasser leben, können Haare nicht mehr zum Wärmen des Organismus dienen, sondern sie würden sogar das Schwimmen verlangsamen.

Somit ist der Haarausfall ein Vorteil für Delfine und Wale. Virag Sharma, der Erstautor der Studie, erzählt: "Wir zeigen in unserer Studie, dass diese Säugetiere mehrere Gene verloren haben, die für die Haarbildung benötigt werden. Das deutet darauf hin, dass der Genverlust höchstwahrscheinlich eine Rolle beim Verlust ihres Fells gespielt haben wird."

Die Studie liefert außerdem neue Erkenntnisse darüber, wie sich bestimmte Fledermäuse, die sich ausschließlich von Fruchtsaft ernähren, an eine vorwiegend zuckerhaltige Nahrung angepasst haben. Die Regulierung der Aufnahme und Verstoffwechselung von Zucker ist die Aufgabe von Insulin, einem Hormon, das in Diabetes-Patienten nicht mehr richtig wirkt und was nicht mehr in ausreichender Menge in Diabetikern produziert wird.

Überraschenderweise fanden die Forscher heraus, dass den früchtefressenden Fledermäusen Gene fehlen, welche die Ausschüttung von Insulin hemmen und dessen Wirkung unterdrücken. Der Verlust dieser Gene bedeutet also, dass Faktoren, die die Zuckerverstoffwechselung hemmen, ausgeschaltet wurden. Für Arten, die eine zuckerreiche Nahrung konsumieren, ist das sicherlich ein Vorteil.

Interessanterweise konnten die Wissenschaftler auch zeigen, dass Arten, die nicht nahe miteinander verwandt sind, aber die gleichen Anpassungsmerkmale an ihre Umwelt entwickelt haben, genau die gleichen Gene verloren haben. Ein Beispiel dafür ist ein Gen, das nur bei den Säugetieren verloren gegangen ist, deren Körper mit Schuppen gepanzert sind, wie es beim Schuppentier und Gürteltier der Fall ist. Dieses Gen ist wichtig, um DNA-Schäden zu reparieren, die durch UV-Licht verursacht werden. Das lässt vermuten, dass die Schuppen die Haut dieser gepanzerten Tiere ausreichend gut vor UV-Licht schützen, so dass diese Säugetiere das DNA- Reparaturgen nicht mehr benötigen.

Michael Hiller, der Studienleiter, fasst zusammen: "Unsere Ergebnisse liefern umfangreiche Belege für das evolutionäre Potenzial von Genverlusten. Im Laufe der Evolution kann ein Verlust von Genen also nicht nur schädigend wirken, sondern unter besonderen Umständen sogar von Vorteil sein. Zurzeit werden die Genome zahlreicher Spezies in rasantem Tempo sequenziert, was die Grundlage liefert, um die Rolle von Genverlusten bei der Ausbildung charakteristischer Merkmale verschiedener Arten weiter zu untersuchen."

Publikation:
Virag Sharma, Nikolai Hecker, Juliana G. Roscito, Leo Foerster, Bjoern E. Langer & Michael Hiller: A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. Nature Communications, 23. März 2018, doi:10.1038/s41467-018-03667-1

Über das MPI-CBG
Das Max-Planck-Institut für molekulare Zellbiologie und Genetik (MPI-CBG) ist eines von 84 Instituten der Max-Planck-Gesellschaft, einer unabhängigen gemeinnützigen Organisation in Deutschland. 500 Menschen aus 50 Ländern aus den verschiedensten Disziplinen arbeiten am MPI-CBG und lassen sich von ihrem Forscherdrang antreiben, um die Frage zu klären: Wie organisieren sich Zellen zu Geweben?

Weitere Informationen:
Michael Hiller
+49 (0) 351 210 2781
hiller@mpi-cbg.de

Weitere Informationen:

https://www.mpi-cbg.de/research-groups/current-groups/michael-hiller/research-fo...

Katrin Boes | Max-Planck-Institut für molekulare Zellbiologie und Genetik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Behandlungsansatz für Juckreizgeplagte
15.08.2018 | Universität Zürich

nachricht Cholestase: Riss in Lebermembran lässt Galle abfließen
15.08.2018 | Leibniz-Institut für Arbeitsforschung an der TU Dortmund

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Alles zur Kryotechnik: HDT bietet Seminar zum „Kryostatbau“ in Karlsruhe an

15.08.2018 | Seminare Workshops

Brandschutz im Tanklager – Tagung in Essen

15.08.2018 | Seminare Workshops

Orientieren auf die Schnelle: Neue Erkenntnisse zur Wahrnehmungssteuerung im Gehirn

15.08.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics