Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Welche Gene beeinflussen den Energiestoffwechsel von Archaea?

15.11.2016

Mikroorganismen wie Bakterien und Archaea spielen eine unverzichtbare ökologische Rolle in den großen Stoffkreisläufen. Einem Forschungsteam um ERC-Preisträgerin Christa Schleper von der Universität Wien gelang es 2011, das erste Ammoniak oxidierende Archaeon aus Böden in Reinkultur zu isolieren und seine Aktivität nachzuweisen: "Nitrososphaera viennensis" – der "sphärische Ammoniakoxidierer aus Wien". In der aktuellen Ausgabe des renommierten Fachjournals PNAS präsentieren die WissenschafterInnen neue Ergebnisse: Sie konnten sämtliche Proteine nachweisen, die während der Ammoniak-Oxidation aktiv sind – ein weiterer wichtiger Puzzlestein zur Aufklärung des Energiestoffwechsels von Archaea.

Noch immer werden Mikroorganismen häufig lediglich als Krankheitserreger wahrgenommen, obwohl die überwiegende Zahl von ihnen eine wichtige ökologische Rolle in den globalen Stoffkreisläufen spielt: Ohne die Stoffwechselleistungen der kleinsten aller Lebewesen, der Bakterien und Archaea, wäre ein Leben auf der Erde nicht möglich.


Biofilm von Nitrososphaera viennensis: Die Zellen fluoreszieren in blau (DAPI-Farbstoff) und die "Klebestoffe" des Biofilms leuchten in grün.

Copyright: Melina Kerou

Diese Mikroorganismen spielen eine zentrale Rolle in den großen Stoffkreisläufen, indem sie organische Materie zersetzen und die erhaltenen Grundbausteine in die Atmosphäre zurückführen oder für neues Leben verfügbar machen. Aus der Mikrobiomforschung ist mittlerweile auch bekannt, dass unsere Darmbakterien nicht nur unsere allgemeine Gesundheit, sondern sogar unsere Psyche beeinflussen.

Aber wie steht es mit den Archaea? Lange wurde diese zweite Gruppe der Mikroorganismen, die neben den Bakterien zu den Prokaryoten zählen, nur in heißen Quellen und anderen extremen Standorten gefunden. Erst vor gut zehn Jahren wurden die sogenannten Thaumarchaea in großer Zahl im Meerwasser aller Ozeane entdeckt, aber auch in Böden und Seen. Diese Archaea oxidieren Ammoniak zu Nitrit und sind aufgrund ihrer weiten Verbreitung offensichtlich maßgeblich an diesem wichtigen Schritt des Stickstoffkreislaufs beteiligt.

Der erste offiziell beschriebene Stamm eines solchen Archaeons ist "Nitrososphaera viennensis". Es stammt aus dem Garten des Universitätszentrums Althanstraße im 9. Wiener Gemeindebezirk und trägt aufgrund seiner Form und Herkunft den Namen "Nitrososphaera viennensis", der "sphärische Ammoniakoxidierer aus Wien". Eine einzelne Zelle weist einen Durchmesser von nur 0,8 Mikrometern auf, somit 0,8 Millionstel Meter.

Dieser wissenschaftliche Durchbruch im Jahr 2011 hat die Voraussetzungen dafür geschaffen, dass Christa Schleper mit ihrem Team und mit Kollegen des Vienna Metabolomics Centers (VIME) nicht nur die einzelnen Gene, sondern auch die Proteine eines Ammoniak oxidierenden Archaeons im Boden im Detail untersuchen konnte.

"Da der Organismus nur zu einer sehr geringen Dichte wächst, mussten wir große Kulturen anzüchten, um genügend Biomasse zu erhalten", erklärt Christa Schleper. Die WissenschafterInnen konnten nun erstmalig erforschen, welche der Gene dieses Modellorganismus in allen Thaumarchaeota vorkommen und welche davon während der Ammoniak-Oxidation aktiv sind.

"Unsere Studie erlaubt es, Hypothesen über den Prozess der Ammoniak-Oxidation aufzustellen und in der Folge experimentell zu überprüfen: Denn bis heute ist der grundlegende Energiestoffwechsel dieser zu den häufigsten Mikroorganismen auf unserem Planeten gehörenden Archaea noch nicht aufgeklärt", so die Mikrobiologin.

Weiters liefert die neue Studie erstmals Hinweise auf besondere Anpassungen der im Boden lebenden Vertreter der Archaea. Dazu gehören u.a. ihre Fähigkeiten, Biofilme zu bilden oder mit anderen Mikroorganismen zu interagieren. "Ein besseres Verständnis der im Boden lebenden Archaea ist von großer ökologischer Bedeutung: Da Archaea bei der Oxidation von Ammoniak weniger Treibhausgase als Bakterien bilden, ist es wichtig zu lernen, unter welchen Bedingungen sich Archaea bevorzugt in landwirtschaftlichen Böden vermehren lassen", erklärt Christa Schleper. In Zukunft könnte die Erforschung von "Nitrososphaera viennensis" auch medizinische Relevanz gewinnen, da nah verwandte Vertreter auf der menschlichen Haut zu finden sind.

Publikation in "PNAS":
Melina Kerou, Pierre Offre, Luis Valledor, Sophie Abby, Michael Melcher, Matthias Nagler,
Wolfram Weckwerth, and Christa Schleper: Proteomics and comparative genomics of
Nitrososphaera viennensis reveal the core genome and adaptations of terrestrial archaeal ammonia oxidizers, In: PNAS Online Early Edition, 14. November 2016
DOI: http://www.pnas.org/cgi/doi/10.1073/pnas.1601212113

Wissenschaftliche Kontakte
Univ.-Prof. Dipl.-Biol. Dr. Christa Schleper
Department für Ökogenomik und Systembiologie
Universität Wien
1090 Wien, Althanstraße 14 (UZA I)
T +43-1-4277-76510
M +43-664-602 77-765 10
christa.schleper@univie.ac.at

Univ.-Prof. Wolfram Weckwerth
Department für Ökogenomik und Systembiologie
Forschungsplattform Vienna Metabolomics Center
Universität Wien
1090 Wien, Althanstraße 14 (UZA I)
T +43-1-4277-765 50
M +43-664-602 77-765 50
wolfram.weckwerth@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-60277-175 33
alexandra.frey@univie.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.600 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 93.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics