Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Pflanzen zu Fleischfressern macht

27.05.2015

Welche Gene sind dafür verantwortlich, dass Pflanzen Tiere fangen und verdauen können? Bei der Venusfliegenfalle sind drei davon jetzt beschrieben. Sie sorgen dafür, dass die Pflanze das lebenswichtige Kalium aus ihren Beutetieren höchst effizient nutzen kann.

Fleischfressende Pflanzen wie die Venusfliegenfalle (Dionaea muscipula) wachsen an extrem nährstoffarmen Standorten. Um dort überleben zu können, haben sie sich im Lauf der Evolution spezialisiert: Sie besorgen sich eine Zusatzernährung in Form von Tieren.


Ein Insekt auf der Klappfalle einer Venusfliegenfalle. Deutlich erkennbar sind die Sinneshaare, die das Schließen der Falle auslösen.

(Foto: Sönke Scherzer)


Wie die Kaliumaufnahme in die Drüsenzellen der Venusfliegenfalle vor sich geht.

(Grafik: Sönke Scherzer)

Die Venusfliegenfalle fängt ihre Beute mit Blättern, die zu Klappfallen umgebildet sind. Berühren Insekten spezielle Sinneshaare auf der Falle, klappt diese blitzschnell zu und wandelt sich in eine Art grünen Magen um: Drüsen geben ein salzsäurehaltiges Gemisch aus Verdauungsenzymen ab, und aus der Beute werden neben Nährstoffen auch Minerale wie Kalzium, Magnesium und Kalium freigesetzt. Über ihre Drüsen verleibt sich die Pflanze diese Zusatzmahlzeit dann ein.

PNAS-Publikation eines internationalen Teams

Besonders Kalium ist lebenswichtig für Pflanzen. Fleischfressende Gewächse brauchen es auch dringend für den Betrieb ihrer Fallen. Wie effizient die Venusfliegenfalle sich das Kalium aus ihren Beutetieren holt, hat jetzt ein internationales Forschungsteam herausgefunden. Die Ergebnisse sind im Fachmagazin PNAS veröffentlicht.

Beteiligt an der Publikation sind die Gruppen des Würzburger Biophysikers Professor Rainer Hedrich und des Göttinger Neurowissenschaftlers und Nobelpreisträgers Professor Erwin Neher. Sie haben dafür mit den Professoren Sergey Shabala (Australien), Heinz Rennenberg (Freiburg) und Khaled Al-Rasheid (Saudi Arabien) zusammengearbeitet.

Konzertierte Aktion zweier Kaliumtransporter

Erste Erkenntnis: Die Drüsen in der Klappfalle können nur dann Kalium aufnehmen, wenn zuvor tatsächlich auch ein Insekt gefangen wurde. Als nächstes analysierten die Forscher die Gene, die für die Aufnahme von Kalium aktiviert werden. Es stellte sich heraus, dass zwei Kaliumtransporter und ein Enzym, eine Proteinkinase, hochgefahren werden. Genau diese drei werden auch bei „normalen“, also nicht-fleischfressenden Pflanzen mit der Kaliumaufnahme in der Wurzel in Verbindung gebracht.

Und so sieht das Zusammenspiel der drei Akteure aus: Das Enzym aktiviert die beiden Kaliumtransporter, die in einer konzertierten Aktion das gesamte Kalium aus der Beute in die Pflanze schaffen. Zuerst senkt der Transporter DmAKT1 den Kaliumspiegel im Magen der Venusfliegenfalle drastisch ab, dann erledigt der Transporter DmHAK5 die Feinarbeit. „Er hat eine beträchtliche Pumpkraft und kann auch dann noch Kalium in die Drüsenzellen verfrachten, wenn die Kaliumkonzentration dort schon sehr hoch ist“, erklärt Hedrichs Assistent Sönke Scherzer.

Auf der Suche nach dem Kaliumsensor

Was die Forscher als nächstes herausfinden wollen: Wie merken die Kalium-Aufnahmesysteme der Venusfliegenfalle, dass eine kaliumreiche Beute in der Falle sitzt? Dazu Hedrich: „Wir haben erste Hinweise darauf, dass nicht erst das aus der Beute freigesetzte Kalium, sondern schon die Berührung der Sinneshaare die Neusynthese der Transporter einleitet.“

Zu prüfen bleibt außerdem: Wie wird die Kaliumkonzentration im grünen Magen gemessen? Wie bekommt die Proteinkinase signalisiert, dass sie die beiden Transporter anschalten muss? Dieser noch zu identifizierende Kaliumsensor müsste die Kaliumaufnahmesysteme auch wieder abschalten, wenn der Magen kaliumleer ist, vermutet Hedrich: Dann öffnet sich die Falle wieder und ist bereit für den nächsten Fang.

Förderung vom Europäischen Forschungsrat

Hedrich treibt die Erforschung der Venusfliegenfalle und anderer fleischfressender Pflanzen mit einer hochkarätigen Förderung voran: Im Jahr 2010 hat der Europäische Forschungsrat (ERC) dem Würzburger Pflanzenwissenschaftler dafür einen „Advanced Grant“ über 2,5 Millionen Euro bewilligt. Im ERC-Projekt „Carnivorom“ ist Hedrichs Team den Genen auf der Spur, die Pflanzen zu Fleischfressern machen.

Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps, Sönke Scherzer, Jennifer Böhm, Elzbieta Krol, Lana Shabala, Ines Kreuzer, Christina Larisch, Felix Bemm, Khaled A.S. Al-Rasheid, Sergey Shabala, Heinz Rennenberg, Erwin Neher, Rainer Hedrich. PNAS Early Edition, 21. Mai 2015, DOI: 10.1073/pnas.1507810112

Kontakt

Prof. Dr. Rainer Hedrich, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics