Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was ApoE4 fürs Gehirn gefährlich macht

29.06.2020

Apolipoprotein E4 gilt als wichtigster genetischer Risikofaktor für eine Alzheimer-Erkrankung. Warum ApoE4 das Gehirn schädigt, hat nun eine Arbeitsgruppe um den MDC-Wissenschaftler Thomas Willnow herausgefunden.

Apolipoprotein E (ApoE) ist so etwas wie ein Lieferservice für das menschliche Gehirn. Es versorgt die Nervenzellen mit wichtigen Nährstoffen, unter anderem mit mehrfach ungesättigten Fettsäuren – Bestandteile der Membranen, die die Nervenzellen umhüllen.


Bei Bindung von apoE3 kann der Rezeptor Sortilin (rot) an die Zelloberfläche gelangen. Die Bindung von apoE4 verklumpt ihn im Innern der Zelle. Er wird funktionslos.

© AG Willnow, MDC

Außerdem werden bestimmte ungesättigte Fettsäuren in Endocannabinoide umgewandelt. Das sind körpereigene Botenstoffe, die zahlreiche Funktionen des zentralen Nervensystems regulieren, etwa das Gedächtnis oder die Steuerung der Immunantwort, und sie schützen das Gehirn vor Entzündungen.

Die ApoE-Ladung gelangt über Sortilin, einen Membran-Rezeptor, in die Nervenzellen: Sortilin bindet ApoE und transportiert es über eine Einstülpung der Zellmembran in das Innere der Nervenzelle. Dieser Vorgang heißt Endozytose.

ApoE im Zusammenspiel mit Sortilin hat einen ganz wesentlichen Einfluss auf unsere Hirngesundheit: Gelangen nicht genug mehrfach ungesättigte Fettsäuren in die grauen Zellen, verkümmern diese und sind anfällig für Entzündungsreaktionen.

Doch ApoE ist nicht gleich ApoE. Beim Menschen existiert es in drei Genvarianten: ApoE2, ApoE3 und ApoE4. Hinsichtlich ihrer Aufgabe, Lipide zu transportieren, unterscheiden sie sich nicht. Auch die Fähigkeit, an Sortilin zu binden, ist allen drei Varianten gleich.

Allerdings haben Menschen, die eine E4-Form tragen, gegenüber denen mit der E3-Variante ein zwölfmal höheres Risiko, an Alzheimer zu erkranken.

„Warum ApoE4 das Alzheimerrisiko so stark erhöht, ist eine der zentralen Fragen in der Alzheimerforschung“, sagt Professor Thomas Willnow, der am Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) seit vielen Jahren die Entstehung neurodegenerativer Erkrankungen untersucht. Etwa 15 Prozent der Menschen bilden ApoE4. Willnow ist auch an der Charité – Universitätsmedizin Berlin und der Aarhus University affiliiert.

ApoE4 verhindert das Recycling von Sortilin

Eine Studie von Willnows Arbeitsgruppe liefert nun eine mögliche Erklärung, warum ApoE4 so gefährlich für das Gehirn ist. Erstautor der Studie, die kürzlich in der Fachzeitschrift Alzheimer’s & Dementia publiziert wurde, ist Dr. Antonino Asaro vom MDC. Bei der E3-Variante läuft die Endozytose reibungslos ab: Sortilin bindet mit Fettsäuren-beladenes ApoE3.

Nachdem es seine Fracht im Inneren der Nervenzellen abgeliefert hat, kehrt freies Sortilin zurück zur Zelloberfläche, um neues ApoE zu binden. Dies wiederholt sich viele Male pro Stunde, und die Nervenzellen werden ausreichend mit essenziellen Fettsäuren versorgt.

Der Vorgang gerät ins Stocken, wenn ApoE4 beteiligt ist. Bindet Sortilin ApoE4 und transportiert es ins Zellinnere, verklumpt der Rezeptor darin. Er kann nicht zur Zelloberfläche zurückkehren, die Endozytose kommt zum Erliegen. Bei manchen Menschen ist dies der Auftakt zur allmählichen Schädigung des Gehirns.

Es werden immer weniger Fettsäuren aufgenommen, die grauen Zellen können sich nicht schützen und entzünden sich. Dadurch werden sie während des Alterungsprozesses anfälliger für den Zelltod – sie sterben ab. Das Risiko einer Alzheimerdemenz steigt damit rapide.

„Wir haben ein maßgeschneidertes Mausmodell genutzt, um den menschlichen Lipidstoffwechsel abzubilden“, erklärt Willnow. Dafür hat sein Team Mäuse mit verschiedenen ApoE-Varianten des Menschen gezüchtet, sowohl mit ApoE3 als auch mit ApoE4.

Dann untersuchten die Forscher*innen die Lipidzusammensetzung der Maushirne per Massenspektrometrie, einem technischen Verfahren, mit dem Atome und Moleküle analysiert werden können.

In den Hirnzellen der Mäuse mit ApoE3 lief ein gesunder Lipidstoffwechsel ab: Die Menge an ungesättigten Fettsäuren und Endocannabinoiden im Gehirn war ausreichend. Bei den E4-Mäusen hingegen kamen zu wenig Nährstoffe in den Hirnzellen an.

Unter dem Mikroskop zeigte sich, dass die Membranbläschen, die normalerweise Sortilin aus dem Zellinneren zurück zur Zelloberfläche bringen, bei ApoE4 in der Nervenzelle feststeckten – ein Hinweis darauf, dass ApoE4 den Rezeptor verklumpt.

Neuer Ansatz für Alzheimer-Therapeutikum?

„Diese Erkenntnis liefert möglicherweise den Ansatz für eine neue Strategie in der Alzheimer-Therapie“, sagt Willnow. Menschen mit der E4-Variante könnten mit einem Mittel behandelt werden, das verhindert, dass das ApoE4 den Rezeptor verklumpt. In Nervenzellkulturen werden solche Wirkstoffe bereits erprobt.

In Kooperation mit Wissenschaftler*innen des Neuroforschungszentrums der Universität Aarhus in Dänemark wird die MDC-Gruppe um Willnow nun an einem solchen Therapeutikum arbeiten. Die Novo Nordisk Foundation stellt für diese Forschung sieben Millionen Euro zur Verfügung. „Wenn es gelingt, ein solches Medikament zu entwickeln, könnte ein Screening auf ApoE4 sinnvoll sein“, sagt der Zellbiologe. Dann könnten frühzeitig präventive Maßnahmen gegen den Abbau der grauen Zellen bei Menschen mit genetischem Risiko ergriffen werden. „Doch bis es so weit ist, möchte ich selbst lieber nicht wissen, welche ApoE-Variante ich habe.“

Das Max-Delbrück-Centrum für Molekulare Medizin (MDC)

Das Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) wurde 1992 in Berlin gegründet. Es ist nach dem deutsch-amerikanischen Physiker Max Delbrück benannt, dem 1969 der Nobelpreis für Physiologie und Medizin verliehen wurde. Aufgabe des MDC ist die Erforschung molekularer Mechanismen, um die Ursachen von Krankheiten zu verstehen und sie besser zu diagnostizieren, verhüten und wirksam bekämpfen zu können. Dabei kooperiert das MDC mit der Charité – Universitätsmedizin Berlin und dem Berlin Institute of Health (BIH ) sowie mit nationalen Partnern, z.B. dem Deutschen Zentrum für Herz-Kreislauf-Forschung (DHZK), und zahlreichen internationalen Forschungseinrichtungen. Am MDC arbeiten mehr als 1.600 Beschäftigte und Gäste aus nahezu 60 Ländern; davon sind fast 1.300 in der Wissenschaft tätig. Es wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Berlin finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

www.mdc-berlin.de 

Wissenschaftliche Ansprechpartner:

Professor Thomas Willnow
Leiter der Arbeitsgruppe „Molekulare Herz-, Kreislaufforschung“
Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC)
willnow@mdc-berlin.de

Christina Anders
Redakteurin, Kommunikationsabteilung
Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC)
+49 (0)30 9406 2118
christina.anders@mdc-berlin.de oder presse@mdc-berlin.de

Originalpublikation:

Antonino Asaro et al (2020): „Apolipoprotein E4 disrupts the neuroprotective action of sortilin in neuronal lipid metabolism and endocannabinoid signaling“, Alzheimer’s & Dementia, DOI:.1101/2020.01.12.903187 (erscheint in Wiley Early View am 26 June 2020)

Weitere Informationen:

https://www.mdc-berlin.de/de/news/press/alzheimer-im-blick-neue-deutsch-daenisch... Neue deutsch-dänische Forschungskooperation


https://www.mdc-berlin.de/de/willnow AG Willnow

Christina Anders | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft
Weitere Informationen:
https://www.mdc-berlin.de/de/news/press/was-apoe4-fuers-gehirn-gefaehrlich-macht

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entstanden Nervenzellen, um mit Mikroben zu sprechen?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen
09.07.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics