Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Schwefel zu Kohlenstoff

24.01.2017

Unter Chiralität versteht man die Eigenschaft von Objekten, in zwei spiegelbildlichen Formen vorzuliegen, die nicht miteinander zur Deckung gebracht werden können und sich daher zueinander wie unsere linke und rechte Hand verhalten. In seiner jüngsten Arbeit ist es Maulide und seinem Team gelungen, zwischen zwei verschiedenen Elementen – Schwefel und Kohlenstoff – einen so genannten Chiralitätstransfer durchzuführen: Er übertrug die chirale Information über hochselektive Umlagerungsprozesse von Schwefelverbindungen auf ein Kohlenstoffgerüst. Mit der neuen Methode eröffnen sich neue Wege zur Synthetisierung von bioaktiven Molekülen für die Arzneimittelforschung.

Eine Vielzahl der Moleküle, die für das Leben essentiell sind, sind chiral: beispielsweise Kohlenhydrate, RNS und DNS und auch Aminosäuren. Das bedeutet, dass für diese Moleküle eine "linksdrehende" (äquivalent zur linken Hand) und eine "rechtsdrehende" (äquivalent zur rechten Hand) Form existieren können. Diese beiden Formen nennt man "Enantiomere".


Enantiomere Stränge von DNS.

Copyright: Cambridge University/https://bluesci.wordpress.com/2012/10/03/feature-through-the-looking-glass/


Kohlenstoffatome können, so wie Hände, auch chiral sein.

Copyright: Perhelion/Wikimedia Commons; http://bit.ly/1Rwbh2O

In unseren Körpern (und denen anderer Organismen) ist nur eine Enantiomerenform präsent – und dieser Umstand hat großen Einfluss auf jene chemischen Reaktionen, die in uns ablaufen und das Leben bedingen.

ChemikerInnen sehen in chiralen Pharmazeutika ein immer größer werdendes Potenzial in der Arzneimittelforschung. Die Synthese solcher Moleküle in enantiomerenreiner Form ist bis heute eine große Herausforderung in der organischen Synthese. Die Gruppe von Nuno Maulide am Institut für Organische Chemie hat sich – zusammen mit KollegInnen des Instituts für Theoretische Chemie – mit dem Transfer von Chiralität zwischen verschiedenen Atomen und Molekülen befasst und dabei bahnbrechende Ergebnisse erzielt.

Wie sind chirale Moleküle aufgebaut?

"Grundsätzlich enthalten organische Moleküle mehrere Kohlenstoffatome. Wir wissen, dass Kohlenstoff vier chemische Bindungen zu anderen Elementen ausbildet – so werden beispielsweise lange Ketten und komplexe Moleküle gebildet", erklärt Nuno Maulide, Professor für Organische Synthese an der Universität Wien. "Sollten alle vier Substituenten an einem Kohlenstoffatom unterschiedlich sein, so stellt dieser Kohlenstoff ein chirales Zentrum dar. Und somit ist das entsprechende Molekül, in dem dieser Kohlenstoff eingebaut ist, ebenso chiral", so der portugiesische Chemiker.

Andere Elemente können ebenso chiral sein – und ihre Chiralität auf Kohlenstoff übertragen

Kohlenstoff ist aber nicht das einzige Element des Periodensystems, das chiral sein kann. Schwefel, ein oftmals vernachlässigtes Element, kann ebenso vier unterschiedliche Substituenten haben. "Chiraler Schwefel wird oft übersehen, wenn ChemikerInnen von chiralen Elementen reden", sagt Dainis Kaldre, Postdoc in der Maulide-Gruppe und Erstautor der Studie. "Wir fragten uns also: Kann die chirale Information des Schwefels auf Kohlenstoffe übertragen werden?", ergänzt Daniel Kaiser, Coautor der Arbeit. Dem Team ist es nun mit der neuentwickelten Methode gelungen, mehrere chirale Moleküle mit potenziell bioaktiven Eigenschaften zu synthetisieren.

"Man speichert chirale Information am Schwefel – diese kann leicht generiert werden – und verwendet eine, von uns neu entwickelte, chemische Reaktion um sie abzurufen und auf ein Kohlenstoffatom zu übertragen, wo sie besonders wertvoll ist. Um ehrlich zu sein waren wir überrascht, wie leicht das funktioniert", sagt Maulide. Um mechanistische Details besser zu verstehen, wandte sich das Team an die Gruppe von Leticia González am Institut für Theoretische Chemie, mit der eine langjährige Kooperation besteht. "Uns war es möglich ein Modell zu entwerfen, das die Resultate sehr schön beschreibt", betont Gonzalez. "Und das Beste ist, dass einige unserer Voraussagen das Potenzial haben zu neuen Reaktionen zu führen – wir werden also noch eine Weile beschäftigt sein“, so Maulide abschließend.

Publikation in "Angewandte Chemie"
"Asymmetrische Redoxarylierung: Chiralitätstransfer von Schwefel zu Kohlenstoff durch sigmatrope Sulfonium [3,3]-Umlagerung"
Dainis Kaldre, Boris Maryasin, Daniel Kaiser, Leticia González und Nuno Maulide,
in: Angewandte Chemie, 2017.
DOI: 10.1022/acie.201610105
http://onlinelibrary.wiley.com/doi/10.1002/ange.201610105/full

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Nuno Maulide
Institut für Organische Chemie
Universität Wien
1090 Wien, Währinger Straße 38
T +43-1-4277-521 55
M +43-664-602 77-521 55
nuno.maulide@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.600 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit über 175 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics