Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Blatt zum Baum: Künstliche Photosynthese im großen Maßstab

09.09.2016

Forscher entwerfen erstmals praktisch anwendbares Design für photoelektrochemische Wasserspaltung

Wissenschaftler des Forschungszentrums haben zum ersten Mal ein komplettes und kompaktes Design einer Anlage für die künstliche Photosynthese entwickelt. Dies bringt diese Technologie einen entscheidenden Schritt näher zur Anwendung. Das Konzept ist flexibel, sowohl bei den verwendeten Materialien als auch bei der Größe des Systems. Ihre Ergebnisse haben die Forscher jetzt in der Fachzeitschrift Nature Communications veröffentlicht (DOI: 10.1038/NCOMMS12681).


Das Photosynthese-System der ist kompakt und in sich geschlossen. Es lässt sich beliebig erweitern und ist für jede Dünnschicht-Photovoltaik-Technologie und verschiedene Elektrolysearten anwendbar.

Copyright: Forschungszentrum Jülich


Testaufbau des Prototyps der photoelektrochemischen Wasserspaltung

Copyright: Tobias Dyck/Forschungszentrum Jülich

Sonne und Wind sollen in Zukunft den Löwenanteil unserer Energie liefern. Die unstete Natur dieser erneuerbaren Energiequellen richtet den Fokus der aktuellen Forschung immer mehr auf effiziente Speichertechnologien. Wie die Energiequellen selbst sollen sie umweltfreundlich und bezahlbar sein.

Dieser Trend ist besonders offensichtlich in der Forschung zur direkten photoelektrochemischen Wasserspaltung: künstliche Photosynthese, die Kombination von Solarzelle und Elektrolyseur. Mit ihr lässt sich die Energie der Sonne direkt in das universale Speichermedium Wasserstoff umwandeln. Zum ersten Mal in den 1970ern erforscht, gewinnt sie in den letzten Jahren immer größeres Interesse. Bisher liegt der Fokus der Forschung auf der Materialwissenschaft: Neue Absorbermaterialien und Katalysatoren sollen den Wirkungsgrad weiter erhöhen.

Die Jülicher Solarzellenforscher Jan-Philipp Becker und Bugra Turan konzentrierten sich jedoch auf einen Aspekt, der bisher weitgehend vernachlässigt wurde: ein realistisches Design eines solchen Systems, das die Technologie aus den Laboren der Wissenschaftler herausholt und eine praktische Anwendung möglich macht. "Die photoelektrochemische Wasserspaltung wurde bis jetzt immer nur im Labormaßstab getestet", erklärt Burga Turan. "Die einzelnen Komponenten und Materialien wurden verbessert, aber keiner hat wirklich versucht, näher an eine wirkliche Anwendung zu kommen."

Kompakt, komplett und erweiterbar

Das Design der beiden Experten des Jülicher Instituts für Energie- und Klimaforschung unterscheidet sich deutlich von den üblichen Laborexperimenten. Statt fingernagelgroßer einzelner Komponenten, die untereinander mit Drähten verbunden sind, entwickelten sie ein kompaktes, in sich geschlossenes System – komplett aus kostengünstigen, leicht verfügbaren Materialien.

Mit einer Fläche von 64 Quadratzentimetern wirkt ihr Bauelement noch immer relativ klein. Der Trick ist jedoch das flexible Design: Durch die ständige Wiederholung der Basiseinheit lassen sich künftig auch quadratmetergroße Systeme herstellen. Die Basiseinheit wiederum besteht aus mehreren Solarzellen, die durch eine spezielle Lasertechnik miteinander verschaltet sind. "Durch diese Serienverschaltung erreicht jede Einheit die für die Wasserstoffgewinnung nötige Spannung von 1,8 Volt", so Jan-Philipp Becker. "Im Gegensatz zu den bislang in Laborexperimenten üblichen Konzepten zur Aufskalierung erlaubt diese Methode eine höhere Effizienz."

Kompatibel mit diversen Technologien

Im Moment liegt die Sonne-zu-Wasserstoff-Effizienz des Prototyps bei 3,9 Prozent. "Das klingt nicht nach viel", gibt Bugra Turan zu. "Doch das ist natürlich nur ein erster Entwurf einer vollständigen Anlage. Da ist noch mehr drin." Und – geben die Wissenschaftler zu bedenken – natürliche Photosynthese erreicht nur Wirkungsgrade um ein Prozent. Auf bis ungefähr zehn Prozent könnte man mit dem Jülicher Design in relativ kurzer Zeit und unter Verwendung bekannter Solarzellenmaterialien kommen, so Jan-Philipp Becker. Aber es gibt auch andere Ansätze. Zum Beispiel Perowskit, ein neuartiges Hybridmaterial, mit dem man jetzt schon Wirkungsgrade bis zu 14 Prozent erreichen könnte.

"Das ist einer der großen Pluspunkte des neuen Designs. Es erlaubt die unabhängige Optimierung der beiden Hauptkomponenten: des photovoltaischen Teils, der Strom aus Sonnenergie gewinnt, und des elektrochemischen Teils, der diesen Strom zur Wasserspaltung einsetzt." Das patentierte Konzept der Jülicher Forscher ist flexibel: Es ist für jede Dünnschicht-Photovoltaik-Technologie anwendbar und für verschiedene Elektrolysearten. "Wir arbeiten zum ersten Mal in Richtung Markteinführung", erklärt Becker. "Wir haben die Grundlagen dafür geschaffen, wie das überhaupt aussehen könnte."

Originalpublikation:

"Upscaling of integrated photoelectrochemical water-splitting devices to large areas" by Bugra Turan, Jan-Philipp Becker, Félix Urbain, Friedhelm Finger, Uwe Rau, Stefan Haas,
DOI: 10.1038/NCOMMS12681
http://www.nature.com/ncomms/2016/160907/ncomms12681/abs/ncomms12681.html

Ansprechpartner:

Dr. Jan-Philipp Becker
Institut für Energie und Klimaforschung, Photovoltaik (IEK-5)
Tel.: 02561 61-9730
E-Mail: j.becker@fz-juelich.de

Dr. Bugra Turan
Institut für Energie und Klimaforschung, Photovoltaik (IEK-5)
Tel.: 02561 61-9089
E-Mail: b.turan@fz-juelich.de

Prof. Uwe Rau
Institut für Energie und Klimaforschung, Photovoltaik (IEK-5)
Tel.: 02561 61-1554
Email: u.rau@fz-juelich.de

Dr. Stefan Haas
Institut für Energie und Klimaforschung, Photovoltaik (IEK-5)
Tel.: 02561 61-9099
Email: st.haas@fz-juelich.de
Pressekontakt:

Dr. Regine Panknin
Unternehmenskommunikation
Tel.: 02461 61-9054
Email: r.panknin@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/portal/DE/Home/home_node.html - Forschungszentrum Jülich
http://www.fz-juelich.de/iek/iek-5/DE/Home/home_node.html - Institut für Energie und Klimaforschung, Photovoltaik (IEK-5)

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Hautzellen vor Stress schützen
12.12.2018 | Westfälische Wilhelms-Universität Münster

nachricht Neue Testmethode verbessert Tuberkulose-Diagnose bei Nashörnern
12.12.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

gbo datacomp sucht auf jobs for future nach jungen Talenten und setzt Wachstumskurs fort

12.12.2018 | Unternehmensmeldung

Bose-Einstein-Kondensate können Gravitationswellen derzeit wohl kaum nachweisen

12.12.2018 | Physik Astronomie

Neue Testmethode verbessert Tuberkulose-Diagnose bei Nashörnern

12.12.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics