Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Blatt zum Baum: Künstliche Photosynthese im großen Maßstab

09.09.2016

Forscher entwerfen erstmals praktisch anwendbares Design für photoelektrochemische Wasserspaltung

Wissenschaftler des Forschungszentrums haben zum ersten Mal ein komplettes und kompaktes Design einer Anlage für die künstliche Photosynthese entwickelt. Dies bringt diese Technologie einen entscheidenden Schritt näher zur Anwendung. Das Konzept ist flexibel, sowohl bei den verwendeten Materialien als auch bei der Größe des Systems. Ihre Ergebnisse haben die Forscher jetzt in der Fachzeitschrift Nature Communications veröffentlicht (DOI: 10.1038/NCOMMS12681).


Das Photosynthese-System der ist kompakt und in sich geschlossen. Es lässt sich beliebig erweitern und ist für jede Dünnschicht-Photovoltaik-Technologie und verschiedene Elektrolysearten anwendbar.

Copyright: Forschungszentrum Jülich


Testaufbau des Prototyps der photoelektrochemischen Wasserspaltung

Copyright: Tobias Dyck/Forschungszentrum Jülich

Sonne und Wind sollen in Zukunft den Löwenanteil unserer Energie liefern. Die unstete Natur dieser erneuerbaren Energiequellen richtet den Fokus der aktuellen Forschung immer mehr auf effiziente Speichertechnologien. Wie die Energiequellen selbst sollen sie umweltfreundlich und bezahlbar sein.

Dieser Trend ist besonders offensichtlich in der Forschung zur direkten photoelektrochemischen Wasserspaltung: künstliche Photosynthese, die Kombination von Solarzelle und Elektrolyseur. Mit ihr lässt sich die Energie der Sonne direkt in das universale Speichermedium Wasserstoff umwandeln. Zum ersten Mal in den 1970ern erforscht, gewinnt sie in den letzten Jahren immer größeres Interesse. Bisher liegt der Fokus der Forschung auf der Materialwissenschaft: Neue Absorbermaterialien und Katalysatoren sollen den Wirkungsgrad weiter erhöhen.

Die Jülicher Solarzellenforscher Jan-Philipp Becker und Bugra Turan konzentrierten sich jedoch auf einen Aspekt, der bisher weitgehend vernachlässigt wurde: ein realistisches Design eines solchen Systems, das die Technologie aus den Laboren der Wissenschaftler herausholt und eine praktische Anwendung möglich macht. "Die photoelektrochemische Wasserspaltung wurde bis jetzt immer nur im Labormaßstab getestet", erklärt Burga Turan. "Die einzelnen Komponenten und Materialien wurden verbessert, aber keiner hat wirklich versucht, näher an eine wirkliche Anwendung zu kommen."

Kompakt, komplett und erweiterbar

Das Design der beiden Experten des Jülicher Instituts für Energie- und Klimaforschung unterscheidet sich deutlich von den üblichen Laborexperimenten. Statt fingernagelgroßer einzelner Komponenten, die untereinander mit Drähten verbunden sind, entwickelten sie ein kompaktes, in sich geschlossenes System – komplett aus kostengünstigen, leicht verfügbaren Materialien.

Mit einer Fläche von 64 Quadratzentimetern wirkt ihr Bauelement noch immer relativ klein. Der Trick ist jedoch das flexible Design: Durch die ständige Wiederholung der Basiseinheit lassen sich künftig auch quadratmetergroße Systeme herstellen. Die Basiseinheit wiederum besteht aus mehreren Solarzellen, die durch eine spezielle Lasertechnik miteinander verschaltet sind. "Durch diese Serienverschaltung erreicht jede Einheit die für die Wasserstoffgewinnung nötige Spannung von 1,8 Volt", so Jan-Philipp Becker. "Im Gegensatz zu den bislang in Laborexperimenten üblichen Konzepten zur Aufskalierung erlaubt diese Methode eine höhere Effizienz."

Kompatibel mit diversen Technologien

Im Moment liegt die Sonne-zu-Wasserstoff-Effizienz des Prototyps bei 3,9 Prozent. "Das klingt nicht nach viel", gibt Bugra Turan zu. "Doch das ist natürlich nur ein erster Entwurf einer vollständigen Anlage. Da ist noch mehr drin." Und – geben die Wissenschaftler zu bedenken – natürliche Photosynthese erreicht nur Wirkungsgrade um ein Prozent. Auf bis ungefähr zehn Prozent könnte man mit dem Jülicher Design in relativ kurzer Zeit und unter Verwendung bekannter Solarzellenmaterialien kommen, so Jan-Philipp Becker. Aber es gibt auch andere Ansätze. Zum Beispiel Perowskit, ein neuartiges Hybridmaterial, mit dem man jetzt schon Wirkungsgrade bis zu 14 Prozent erreichen könnte.

"Das ist einer der großen Pluspunkte des neuen Designs. Es erlaubt die unabhängige Optimierung der beiden Hauptkomponenten: des photovoltaischen Teils, der Strom aus Sonnenergie gewinnt, und des elektrochemischen Teils, der diesen Strom zur Wasserspaltung einsetzt." Das patentierte Konzept der Jülicher Forscher ist flexibel: Es ist für jede Dünnschicht-Photovoltaik-Technologie anwendbar und für verschiedene Elektrolysearten. "Wir arbeiten zum ersten Mal in Richtung Markteinführung", erklärt Becker. "Wir haben die Grundlagen dafür geschaffen, wie das überhaupt aussehen könnte."

Originalpublikation:

"Upscaling of integrated photoelectrochemical water-splitting devices to large areas" by Bugra Turan, Jan-Philipp Becker, Félix Urbain, Friedhelm Finger, Uwe Rau, Stefan Haas,
DOI: 10.1038/NCOMMS12681
http://www.nature.com/ncomms/2016/160907/ncomms12681/abs/ncomms12681.html

Ansprechpartner:

Dr. Jan-Philipp Becker
Institut für Energie und Klimaforschung, Photovoltaik (IEK-5)
Tel.: 02561 61-9730
E-Mail: j.becker@fz-juelich.de

Dr. Bugra Turan
Institut für Energie und Klimaforschung, Photovoltaik (IEK-5)
Tel.: 02561 61-9089
E-Mail: b.turan@fz-juelich.de

Prof. Uwe Rau
Institut für Energie und Klimaforschung, Photovoltaik (IEK-5)
Tel.: 02561 61-1554
Email: u.rau@fz-juelich.de

Dr. Stefan Haas
Institut für Energie und Klimaforschung, Photovoltaik (IEK-5)
Tel.: 02561 61-9099
Email: st.haas@fz-juelich.de
Pressekontakt:

Dr. Regine Panknin
Unternehmenskommunikation
Tel.: 02461 61-9054
Email: r.panknin@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/portal/DE/Home/home_node.html - Forschungszentrum Jülich
http://www.fz-juelich.de/iek/iek-5/DE/Home/home_node.html - Institut für Energie und Klimaforschung, Photovoltaik (IEK-5)

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Die wahrscheinlich kleinsten Stabmagnete der Welt
17.10.2019 | Friedrich-Schiller-Universität Jena

nachricht Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination
17.10.2019 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics