Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Versteckter Nanostromschalter: Kieler Forschende entdecken Schaltfunktion in molekularem Draht

27.10.2017

Die weitere Miniaturisierung in der Elektronik wird zu Bauteilen führen, die nur noch aus wenigen oder einzelnen Molekülen bestehen. Um diese Komponenten auf der Nanoebene zu einem Stromkreis zu verbinden, werden winzige Drähte benötigt. Ein internationales Forschungsteam der Christian-Albrechts-Universität zu Kiel (CAU) und des Donostia International Physics Centers in San Sebastián/Spanien hat jetzt einen Draht aus einem einzelnen Molekül mit dem Durchmesser eines Atoms hergestellt. Er funktioniert wie ein Nanostromschalter und macht den Einsatz molekularer Drähte in elektronischen Bauteilen denkbar. Die Ergebnisse der Forschungsteams erschienen in der Zeitschrift Physical Review Letters.

Gerade einmal zwei Atombindungen lang und ein Atom breit ist der Draht, den die Wissenschaftlerinnen und Wissenschaftler aus Kiel und San Sebastian hergestellt haben. „Das ist der denkbar einfachste molekulare Draht, dünner und viel kürzer geht es nicht“, erklärt der Kieler Physiker Torben Jasper-Tönnies, Erstautor der Publikation.


An die Spitze des Rastertunnelmikroskops setzte Torben Jasper-Tönnies ein einzelnes Atom und konnte damit einen molekularen Draht an einen Stromkreis anschließen.

Foto: Siekmann/CAU


Je näher die Spitze des Rastertunnelmikroskops (gelb) dem Nanodraht (blau) kommt, desto mehr biegt er sich – und die Stärke des Stromflusses ändert sich, wie ein Stromschalter auf Nanoebene.

Foto: Siekmann/CAU

Um den Strom zu messen, der durch den Nanodraht fließt, müssen seine beiden Enden jeweils mit einer Metallelektrode verbunden werden – wie bei größeren Schaltkreisen auch. Doch es gibt keine Metallklammern, die klein genug wären, um elektrische Kontakte im Nanomaßstab herzustellen.

„Einzelne Moleküle in einem elektrischen Schaltkreis zu kontaktieren, ist ein Problem, das bisher noch nicht zufriedenstellend gelöst wurde und in der Forschung viel diskutiert wird“, erklärt Jasper-Tönnies, der derzeit in der Arbeitsgruppe von Professor Richard Berndt seine Doktorarbeit schreibt.

Um einen elektrischen Kontakt zu ermöglichen, entwickelten die Wissenschaftlerinnen und Wissenschaftler den neuen Draht aus einem Molekül. „Das Besondere an unserem Draht ist, dass wir ihn senkrecht auf eine Metalloberfläche anbringen können. Das heißt, einer der beiden nötigen Kontakte ist im Draht gewissermaßen schon eingebaut“, erläutert Jasper-Tönnies das Prinzip.

Dafür nutzen die beteiligten Chemikerinnen und Chemiker einen Ansatz aus dem Kieler Sonderforschungsbereich 677 „Funktion durch Schalten“. In dem interdisziplinären Forschungsverbund wird unter anderem mit molekularen Plattformen gearbeitet. Auf so eine Plattform stellten sie den Draht. Sie besitzt eine gute Leitfähigkeit und lässt sich ähnlich wie ein Saugnapf problemlos an einer Metalloberfläche befestigen – der Anfang für einen Stromkreis ist gemacht.

Für den zweiten benötigten Kontakt nutzte das Forschungsteam ein Rastertunnelmikroskop (RTM). Mit einer Metallspitze „ertastet“ es sich eine Probe und erstellt so eine Abbildung ihrer Oberfläche bis auf die Skala von wenigen Nanometern. So werden auch einzelne Atome sichtbar. In ihren Experimenten verwendeten die Kieler Forschenden für das RTM eine besonders feine Metallspitze, an deren Ende nur ein einziges Atom sitzt.

Damit konnten sie das zweite Drahtende elektrisch kontaktieren, den Stromkreis schließen und die Stromstärke messen. „Durch diesen sehr präzisen Kontakt über nur ein Atom haben wir besonders gute Daten erhalten. Wir können diese Kontakte immer wieder herstellen und die Stromwerte unterscheiden sich von Draht zu Draht wenig“, sagt Jasper-Tönnies.

Während ihrer Messungen stellten die Wissenschaftler außerdem fest, dass zwischen der Metallspitze des RTM und dem Nanodraht quantenmechanische Kräfte wirken, mit deren Hilfe sich der Draht mechanisch verbiegen lässt. Wird der Draht nur leicht verbogen, reduziert sich die Stromstärke. Bei starkem Verbiegen steigt sie hingegen an. „Durch das Biegen des Drahts konnten wir also den Strom an- oder ausschalten. Obwohl unser Draht so einfach aufgebaut ist, verhält er sich sehr komplex – das hat uns überrascht“, so Jasper-Tönnies.

Die Ursache für die ungewöhnliche Stromleitung des Nanodrahts sehen die Wissenschaftlerinnen und Wissenschaftler in seiner molekularen Struktur. Das untermauern die Berechnungen von Dr. Aran Garcia-Lekue und Professor Thomas Frederiksen aus San Sebastián. Aufgrund der quantenmechanischen Kräfte gehen einzelne Atome des Drahts neue chemische Bindungen mit dem Atom der RTM-Spitze ein. So verändert sich die Geometrie des Moleküls und damit seine Eigenschaften.

„Tatsächlich können kleine geometrische Unterschiede einen sehr großen Effekt haben. Deshalb ist es wichtig, die Geometrie eines Moleküls möglichst genau einstellen und messen zu können – und das erreichen wir über die präzise Kontaktierung des Nanodrahts und über die RTM-Bilder in atomarer Auflösung“, so Jasper-Tönnies.

Die Publikation der Forschenden aus Kiel und San Sebastián wurde in den Physical Review Letters von den Herausgebern als „Editors' Suggestion“ besonders hervorgehoben.

Original-Publikation
Conductance of a Freestanding Conjugated Molecular Wire, Torben Jasper-Tönnies, Aran Garcia-Lekue, Thomas Frederiksen, Sandra Ulrich, Rainer Herges, Richard Berndt. Phys. Rev. Lett. 119, 2017, 066801
https://doi.org/10.1103/PhysRevLett.119.066801

Bildmaterial steht zum Download bereit:

http://www.uni-kiel.de/download/pm/2017/2017-330-1.jpg
Bildunterschrift: Mit viel technischem Aufwand setzte Torben Jasper-Tönnies ein einzelnes Atom an die Spitze des Rastertunnelmikroskops. Es hat sich gelohnt: Der Physiker konnte einen winzigen Draht aus einem Moleküle an einen Stromkreis anschließen.
Foto: Siekmann/CAU

http://www.uni-kiel.de/download/pm/2017/2017-330-2.png
Bildunterschrift: Draufsicht: Gerade einmal ein Atom – weniger als ein Nanometer – ist der Draht (grün) breit, der senkrecht auf einer leitfähigen Plattform (rot) angebracht ist. Sie lässt sich ähnlich problemlos wie ein Saugnapf auf einer Metalloberfläche (dunkel) anbringen – der Anfang für einen Stromkreis ist gemacht.
Copyright: Jasper-Tönnies

http://www.uni-kiel.de/download/pm/2017/2017-330-3.png
Bildunterschrift: So wird das Drahtmolekül zum Nanoschalter: Je näher die Spitze des Rastertunnelmikroskops (gelb) dem Nanodraht (blau) kommt, desto mehr biegt er sich – und die Stärke des Stromflusses ändert sich, wie ein Stromschalter auf Nanoebene. Quantenmechanische Kräfte, die zwischen Spitze und Draht wirken, verändern die Geometrie des Drahtmoleküls und damit seine Eigenschaften.
Copyright: Jasper-Tönnies

Kontakt:
Dipl.-Phys. Torben Jasper-Tönnies
Institut für Experimentelle und Angewandte Physik
Tel.: 0431/880-3834
E-Mail: jasper-toennies@physik.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text/Redaktion: Julia Siekmann
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni, Instagram: www.instagram.com/kieluni

Im Sonderforschungsbereich 677 „Funktion durch Schalten“ an der Christian-Albrechts-Universität zu Kiel arbeiten rund einhundert Wissenschaftlerinnen und Wissenschaftler aus Chemie, Physik, Materialwissenschaften, Pharmazie und Medizin fächerübergreifend daran, schaltbare molekulare Maschinen zu entwickeln, die zum Beispiel durch Licht oder Temperatur gesteuert werden können. Der SFB wird seit 2007 durch die Deutsche Forschungsgemeinschaft finanziert. Weitere Informationen: http://www.sfb677.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics