Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Versteckte Dynamik in neuronalen Netzwerken entdeckt

16.07.2019

Neuronale Netzwerke im Gehirn verarbeiten Informationen besonders gut, wenn sie sich in der Nähe eines kritischen Punkts befinden. Davon gingen Hirnforscher bis jetzt aufgrund theoretischer Überlegungen aus. Doch in experimentellen Untersuchungen der Hirnaktivität fanden sich weniger Anzeichen für solche kritischen Zustände, als eigentlich zu erwarten wäre. Wissenschaftlerinnen und Wissenschaftler des Forschungszentrums Jülich und der RWTH Aachen liefern dafür nun eine mögliche Erklärung. Sie wiesen nach, dass sich neuronale Netzwerke in einem zweiten, bislang unbekannten kritischen Modus befinden können, dessen versteckte Dynamik sich mit den gängigen Messverfahren kaum erfassen lässt.

Kritische Punkte, an denen komplexe Systeme schlagartig ihre Eigenschaften ändern, sind aus der Physik bekannt. Ein Beispiel sind ferromagnetische Materialien. Unterhalb der kritischen Temperatur, der sogenannten Curie-Temperatur, richten sich die Elektronenspins des Materials aus, sodass sie in die gleiche Richtung zeigen. Dabei addieren sich die winzigen magnetischen Momente der einzelnen Spins, was von außen als spontane Magnetisierung des Materials gemessen werden kann.


Die heterogene, kritische Dynamik zeigt sich in spezifischen Projektionen der Nervenzellen-Aktivität, bei denen Neurone unterschiedlich gewichtet werden.

Copyright: Forschungszentrum Jülich / David Dahmen

Eine ganz ähnliche Dynamik konnte bereits früher in Messungen der Hirnaktivität festgestellt werden. Typisch sind Hirnsignale, bei denen in kürzester Zeit lawinenartig große Bereiche des Netzwerks gleichzeitig aktiv werden.

Insgesamt tritt das Phänomen aber deutlich seltener auf, als eigentlich zu erwarten wäre. Wissenschaftler des Forschungszentrums Jülich und der RWTH Aachen haben im Fachmagazin PNAS nun eine Lösung für den scheinbaren Widerspruch präsentiert. Sie haben nachgewiesen, dass neuronale Netzwerke noch eine zweite, bislang unbekannte Art von Kritikalität aufweisen können.

Bei dieser zweiten Form von Kritikalität koordiniert sich ebenfalls eine große Anzahl von Nervenzellen, wie die Analyse der gleichzeitigen Aktivität von 155 Nervenzellen zeigt. Das Zusammenspiel umfasst hier allerdings nicht nur die gleichzeitige Aktivierung, sondern auch die gezielte Hemmung großer Gruppen von Neuronen.

Die gefundene, neuartige Kritikalität erlaubt es dem Netzwerk, Signale in einer Vielzahl von Kombinationen aus aktivierten Neuronen zu repräsentieren und damit, so vermuten die Forscherinnen und Forscher, Information effizient parallel zu verarbeiten.

Zudem erklärt sich, warum von außen kein plötzlicher Anstieg der Netzwerkaktivität feststellbar ist. Standardverfahren wie EEG oder LFP addieren im Wesentlichen die Signale vieler Neurone; bei diesem zweiten kritischen Zustand bleibt die Zahl der aktiven Nervenzellen jedoch weitgehend konstant.

Die heterogene Dynamik lässt sich mit diesen Verfahren daher nicht erfassen. Erst mit hochentwickelten mathematischen Methoden, die sie aus der statistischen Physik entlehnt haben, gelang es den Forschern unter der Leitung von Prof. Moritz Helias experimentell überprüfbare Vorhersagen über die Korrelationen zwischen den Nervenzellen zu machen.

Für den direkten experimentellen Nachweis ihres in Theorie und Simulation vorhergesagten Netzwerkzustandes nutzten die Forscher um Erstautor Dr. David Dahmen die Expertise von Prof. Sonja Grün in der Analyse der gemeinsamen Aktivität vieler Nervenzellen.

„Der weitergehende Wert dieser Studie liegt für mich darin, dass es Prof. Helias und seinem Team gelungen ist, die in der Physik sehr erfolgreiche Methode der Feld-Theorie in der Neurowissenschaft zur Anwendung zu bringen und wir damit auf weitere Einsichten hoffen können“, erklärt Institutsleiter Prof. Markus Diesmann (INM-6).

Diesmann spielt eine tragende Rolle im europäischen Human Brain Project (HBP), einem der größten neurowissenschaftlichen Projekte weltweit, das die Arbeit von über 500 Forschern in 19 EU-Mitgliedsstaaten verbindet.

„Im HBP beschäftigen wir uns mit der Technologie, um große Teile des Gehirns mit all ihren Nervenzellen simulieren zu können. Diese Simulationen alleine schaffen aber noch keine Erkenntnis. Wir erhalten dann einfach simulierte Daten, die genauso kompliziert sind wie die Daten aus der Natur, allerdings können wir die Netzwerke viel gezielter verändern, als dies mit experimentellen Methoden möglich ist. Aber erst die kontrollierte Vereinfachung zu überschaubaren mathematischen Modellen mit wenigen Gleichungen gibt uns die Chance, die zugrunde liegenden Mechanismen zu verstehen", erläutert Markus Diesmann.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Moritz Helias
Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience & Institute for Advanced Simulation (IAS-6), Theoretical Neuroscience & JARA Institute Brain Structure-Function Relationships (JBI-1 / INM-10), Forschungszentrum Jülich & Department of Physics, RWTH Aachen University
Tel. +49 2461 61-9467
E-Mail: m.helias@fz-juelich.de

Originalpublikation:

Second type of criticality in the brain uncovers rich multiple-neuron dynamics, David Dahmen, Sonja Grün, Markus Diesmann, Moritz Helias
Proceedings of the National Academy of Sciences (published 12 June 2019), DOI: 10.1073/pnas.1818972116

Weitere Informationen:

https://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2019/fachmeldungen... Fachmeldung des Forschungszentrums Jülich

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen
29.05.2020 | Universität Heidelberg

nachricht Ein Hormon nach Pflanzenart
29.05.2020 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen

29.05.2020 | Biowissenschaften Chemie

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics