Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vernetzte Zellkraftwerke für eine schlanke Linie

30.09.2015

Unser Körper stellt den Energiehaushalt kontinuierlich auf ein verändertes Nahrungsangebot oder körperliche Aktivität ein. Störungen in diesem Prozess spielen eine wesentliche Rolle bei der Entstehung von Stoffwechselerkrankungen wie Adipositas und Diabetes. Wissenschaftler des Helmholtz Zentrums München berichten jetzt im Journal ‚Cell Metabolism‘, dass dabei das Protein Calcineurin eine zentrale Funktion übernimmt, indem es gezielt Mitochondrien im Muskel miteinander vernetzt und so die Zellatmung optimiert.

In den Mitochondrien wird die aufgenommene Nahrung über biochemische Zwischenschritte in Energie umgewandelt. Die „Kraftwerke“ der Zelle sind in einem Netzwerk miteinander verbunden, welches je nach Aktivität und Bedarf der Zelle über eine Verschmelzung (Fusion) bzw. Teilung (Fission) von Mitochondrien dynamisch reguliert werden kann.


Dr. Paul Pfluger und Prof. Dr. Matthias Tschöp

Quelle: Helmholtz Zentrum München (HMGU)

Wissenschaftler am Helmholtz Zentrum München berichten von einem neuen Mechanismus, wie die Zelle durch Bildung von länglichen mitochondrialen Nanotunneln die Zellatmung verstärkt und hierdurch eine allgemeine Verbesserung des Energie- und Glukosehaushalts im gesamten Körper bewirken kann.

Calcineurin als Schlüsselmolekül identifiziert

Entscheidend dabei ist das Molekül Calcineurin. „In unserer Studie konnten wir zeigen, dass Fliegen, die kein Calcineurin produzieren können, trotz hochkalorischer Nahrung ein geringeres Gewicht, geringere Fettspeicher sowie eine erhöhte Stoffwechselrate aufwiesen“ so Dr. Paul Pfluger vom Institut für Diabetes und Adipositas (IDO), der das Team aus Kollegen des Deutschen Zentrums für Diabetesforschung (DZD) und Wissenschaftlern aus den USA leitete.

Und scheinbar sind die Fliegen kein evolutionärer Einzelfall: auch Mäuse mit einem Calcineurin-Defekt waren trotz fettreicher Nahrung vor Übergewicht geschützt und zeigten einen erhöhten Kalorienverbrauch. Um diesen Effekt zu bestätigen, hemmten die Wissenschaftler im Tiermodell ganz gezielt die Wirkung von Calcineurin durch einen entsprechenden Inhibitor, das sogenannte Tacrolimus*. In der Tat konnte diese Behandlung ebenfalls die Gewichtszunahme durch kalorienreiche Nahrung reduzieren.

Calcineurin-Inhibitoren seit Jahren in der Klinik

„Ein evolutionär so hoch konservierter Mechanismus zur Kontrolle des Stoffwechsels in Fliegen und Mäusen lässt vermuten, dass Calcineurin auch im Menschen eine ähnliche Rolle spielt“, spekuliert Paul Pfluger. „Es würde also naheliegen, die Funktion von Calcineurin medikamentös zu unterbinden, um Fettsucht zu behandeln“.

Entsprechende Inhibitoren werden hochdosiert bereits seit Jahren in der Klinik eingesetzt, um eine Abstoßungsreaktion nach Gewebstransplantationen zu verhindern, sind aber aufgrund zahlreicher Nebenwirkungen nicht unumstritten. Effekte von niedrigdosierten Calcineurin-Inhibitoren auf das Körpergewicht von adipösen Patienten wurden allerdings bisher nicht klinisch untersucht. „Unserer Meinung nach ist eine solche Studie mit niedrigen Konzentrationen von Calcineurin-Inhibitoren durchaus sinnvoll. Entsprechende Ansätze werden aktuell getestet“, so Pfluger.

Weitere Informationen

Hintergrund
* Tacrolimus wird seit Jahren in hoher Dosis zur Suppression des Immunsystems eingesetzt. Das Molekül kommt bei Abstoßungsreaktionen oder atopischen Ekzemen zum Einsatz. Die systemische Gabe ist allerdings mit zahlreichen Nebenwirkungen verbunden.

Original-Publikation:
Pfluger, P. et al. (2015). Calcineurin Links Mitochondrial Elongation with Energy Metabolism, Cell Metabolism, DOI: 10.1016/j.cmet.2015.08.022

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. Das Helmholtz Zentrum München ist Partner im Deutschen Zentrum für Diabetesforschung e.V.

Das Institut für Diabetes und Adipositas (IDO) erforscht die Erkrankungsmechanismen des Metabolischen Syndroms mit systembiologischen und translationalen Ansätzen. Mittels zellulärer Systeme, genetisch modifizierter Mausmodelle und klinischer Interventionsstudien sollen neue Signalwege und Zielstrukturen entdeckt werden. Ziel ist die interdisziplinäre Entwicklung innovativer Therapieansätze zur personalisierten Prävention und Behandlung von Adipositas, Diabetes und deren Begleiterkrankungen. Das IDO ist Teil des Helmholtz Diabetes Center (HDC).

Das Deutsche Zentrum für Diabetesforschung e.V. (DZD) ist eines der sechs Deutschen Zentren der Gesundheitsforschung. Es bündelt Experten auf dem Gebiet der Diabetesforschung und verzahnt Grundlagenforschung, Epidemiologie und klinische Anwendung. Ziel des DZD ist es, über einen neuartigen, integrativen Forschungsansatz einen wesentlichen Beitrag zur erfolgreichen, maßgeschneiderten Prävention, Diagnose und Therapie des Diabetes mellitus zu leisten. Mitglieder des Verbunds sind das Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, das Deutsche Diabetes-Zentrum DDZ in Düsseldorf, das Deutsche Institut für Ernährungsforschung DIfE in Potsdam-Rehbrücke, das Institut für Diabetesforschung und Metabolische Erkrankungen des Helmholtz Zentrum München an der Eberhard-Karls-Universität Tübingen und das Paul-Langerhans-Institut Dresden des Helmholtz Zentrum München am Universitätsklinikum Carl Gustav Carus der TU Dresden, assoziierte Partner an den Universitäten in Heidelberg, Köln, Leipzig, Lübeck und München sowie weitere Projektpartner.

Ansprechpartner für die Medien
Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-Mail: presse@helmholtz-muenchen.de

Fachlicher Ansprechpartner
Dr. Paul Pfluger, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Arbeitsgruppe NeuroBiologie des Diabetes, Institut für Diabetes und Adipositas, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2104 - E-Mail: paul.pfluger@helmholtz-muenchen.de

Weitere Informationen:

http://www.cell.com/cell-metabolism/abstract/S1550-4131%2815%2900455-6 - Link zur Fachpublikation
http://www.helmholtz-muenchen.de/aktuelles/uebersicht/pressemitteilungnews/article/27748/index.html - Pressemitteilung des Helmholtz Zentrums München

Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Berichte zu: Adipositas Calcineurin Diabetes Diabetesforschung Helmholtz IDO Prävention Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Freund oder Feind?
14.07.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Selbst bei Bakterien können sich Geschwister unterscheiden
14.07.2020 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hammer-on – wie man Atome schneller schwingen lässt

Schwingungen von Atomen in einem Kristall des Halbleiters Galliumarsenid (GaAs) lassen sich durch einen optisch erzeugten Strom impulsiv zu höherer Frequenz verschieben. Die mit dem Strom verknüpfte Ladungsverschiebung zwischen Gallium- und Arsen-Atomen wirkt über elektrische Wechselwirkungen zurück auf die Schwingungen.

Hammer-on ist eine von vielen Rockmusikern benutzte Technik, um mit der Gitarre schnelle Tonfolgen zu spielen und zu verbinden. Dabei wird eine schwingende...

Im Focus: Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik

Mit einem Standard-Kryoelektronenmikroskop erzielen Biochemiker der Martin-Luther-Universität Halle-Wittenberg (MLU) erstaunlich gute Aufnahmen, die mit denen weit teurerer Geräte mithalten können. Es ist ihnen gelungen, die Struktur eines Eisenspeicherproteins fast bis auf Atomebene aufzuklären. Die Ergebnisse wurden in der Fachzeitschrift "PLOS One" veröffentlicht.

Kryoelektronenmikroskopie hat in den vergangenen Jahren entscheidend an Bedeutung gewonnen, besonders um die Struktur von Proteinen aufzuklären. Die Entwickler...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: Neue Schlankheitstipps für Computerchips

Lange Zeit hat man in der Elektronik etwas Wichtiges vernachlässigt: Wenn man elektronische Bauteile immer kleiner machen will, braucht man dafür auch die passenden Isolator-Materialien.

Immer kleiner und immer kompakter – das ist die Richtung, in die sich Computerchips getrieben von der Industrie entwickeln. Daher gelten sogenannte...

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wind trägt Mikroplastik in die Arktis

14.07.2020 | Ökologie Umwelt- Naturschutz

Nanoelektronik lernt wie das Gehirn

14.07.2020 | Informationstechnologie

Anwendungslabor Industrie 4.0 der THD: Smarte Lösungen für die Unikatproduktion

14.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics