Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verjüngungskur fürs Gehirn: Zusätzliche Stammzellen verbessern Lernen und Gedächtnis von alten Mäusen

09.01.2020

Je älter wir werden, desto schwieriger wird es für unser Gehirn, neue Dinge zu lernen und sich an sie zu erinnern. Wissenschaftler des Zentrums für Regenerative Therapien der TU Dresden (CRTD) haben untersucht, ob eine Erhöhung der Anzahl von Hirnstammzellen helfen würde, kognitive Funktionen wie Lernen und Gedächtnis wiederzuerlangen, die im Laufe des Alterns verloren gehen.

Im Gehirn alter Mäuse stimulierten die Wissenschaftler den dort vorhandenen kleinen Pool neuronaler Stammzellen so, dass sich die Menge dieser Stammzellen und damit auch die Anzahl der aus ihnen erzeugten Gehirnzellen erhöhte. Diese zusätzlichen Neuronen überlebten und knüpften neue Kontakte zu benachbarten Zellen.


Neurale Stammzellen und künstlich erzeugte Neuronen (grün) im Hippocampus der Maus, die mit reifen Zellen (rot) in Kontakt treten. (Ausschnitt)

CRTD

Ein jeder wird es irgendwann erleben: Je älter wir werden, desto schwieriger wird es für unser Gehirn, neue Dinge zu lernen und sich an sie zu erinnern. Die Gründe hinter diesen Beeinträchtigungen sind oft unklar.

Nun haben Wissenschaftler des Zentrums für Regenerative Therapien der TU Dresden (CRTD) untersucht, ob eine Erhöhung der Anzahl von Hirnstammzellen helfen würde, kognitive Funktionen wie Lernen und Gedächtnis wiederzuerlangen, die im Laufe des Alterns verloren gehen.

Die Forschungsgruppe von Prof. Federico Calegari hat dazu eine im eigenen Labor entwickelte Methode verwendet: Im Gehirn alter Mäuse stimulierten die Wissenschaftler den dort vorhandenen kleinen Pool neuronaler Stammzellen so, dass sich die Menge dieser Stammzellen und damit auch die Anzahl der aus ihnen erzeugten Gehirnzellen erhöhte.

Das Team beobachtete, dass diese zusätzlichen Neuronen überleben und sogar neue Kontakte zu benachbarten Zellen knüpfen können. In einem nächsten Schritt untersuchten die Wissenschaftler eine wichtige Aufgabe des Gehirns, die ähnlich wie bei der Maus auch beim Menschen im Laufe des Alterns verloren geht: die Navigationsfähigkeit.

Es ist vom Alter abhängig, auf welche Art man sich in einer neuen Umgebung zurechtzufinden lernt. In der Jugend erstellt das Gehirn eine kognitive Landkarte und erinnert sich an diese.

Diese Fähigkeit schwindet im Alter – statt mit der Landkarte im Kopf navigieren ältere Individuen anhand fester Abfolgen von Richtungswechseln, um ein bestimmtes Ziel zu erreichen. Die zuverlässigere Strategie von beiden ist jedoch die kognitive Landkarte, sprich: Die Strategie des jungen Gehirns.

Würde eine erhöhte Zahl von Gehirnzellen ausreichen, um den Alterungsprozess zu verlangsamen und damit der nachlassenden Navigationsfähigkeit entgegenzuwirken? Die Wissenschaftler aus den Gruppen von Prof. Calegari (CRTD), Prof. Gerd Kempermann (Deutsches Zentrum für Neurodegenerative Erkrankungen DZNE / CRTD) und Dr. Kentaroh Takagaki (Otto-von-Guericke-Universität Magdeburg) haben die Antwort gefunden und ihre Erkenntnisse in der Fachzeitschrift Nature Communications veröffentlicht.

Ihre Antwort lautet „Ja“: Alte Mäuse mit einem Plus an Stamm- und Gehirnzellen konnten die zuvor verlorene Fähigkeit, eine kognitive Landkarte zu erstellen, zurückgewinnen und erinnerten sich länger an die Details. Dadurch wurden sie den jungen Mäusen ähnlich.

Eine weitere Erkenntnis war, dass die Stimulation der Hirnstammzellen bei jungen Mäusen dafür sorgt, dass ihre Gedächtnisleistung über den gesamten Verlauf des Lebens vergleichsweise gut erhalten bleibt und kognitive Beeinträchtigungen verzögert auftreten.

„In der Jugend ist ein Hirnareal, der Hippocampus, entscheidend für das Erinnern an Orte und Ereignisse. Dort werden auch die kognitiven Landkarten neuer Umgebungen erstellt. Im Alter werden andere Strukturen genutzt, die eher auf Gewohnheiten beruhen. Es ist faszinierend zu sehen, dass das Hinzufügen von Neuronen im Hippocampus es den alten Mäusen erlaubt, die für junge Tiere typischen Strategien zu verwenden. Wir beobachteten nicht nur, wie schnell diese lernten, sondern auch den veränderten, verjüngten Lernprozess", erklärt Gabriel Berdugo-Vega, Erstautor der Studie.

„Auch der Mensch hat Stammzellen im Gehirn, und diese Stammzellen sind dafür bekannt, dass ihre Zahl im Laufe des Lebens stark abnimmt. Für unsere schnell alternde Gesellschaft ist es entscheidend, die Ursachen für altersbedingte kognitive Defizite zu erkennen und zu beheben.

Unsere Studie zeigt, dass wir diesen Beeinträchtigungen mithilfe des körpereigenen Potenzials der Gehirnzellen begegnen und wir so das Gehirn quasi verjüngen können. Als der ‚Senior‘-Autor dieser Studie betrifft mich das Thema ganz persönlich…", sagt Prof. Federico Calegari.

Die Forschungsgruppe von Prof. Federico Calegari konzentriert sich auf die Erforschung von Nervenzellen bei Säugetieren im Kontext von Entwicklung, Differenzierung und Auswirkungen auf Gehirnfunktionen. Am CRTD der TU Dresden widmen sich Spitzenforscher aus mehr als 30 Ländern neuen Therapieansätzen. Sie entschlüsseln die Prinzipien der Zell- und Geweberegeneration und ergründen deren Nutzung für Diagnose, Behandlung und Heilung von Krankheiten.

Das CRTD verknüpft Labor und Klinik, vernetzt Wissenschaftler mit Ärzten, nutzt Fachwissen in Stammzellforschung, Entwicklungsbiologie, Genom-Editing und Geweberegeneration, um letztlich die Heilung von Erkrankungen wie Alzheimer und Parkinson, hämatologischen Krankheiten wie Leukämie, Stoffwechselerkrankungen wie Diabetes sowie Augen- und Knochenerkrankungen zu erreichen.

Diese Studie wurde finanziert durch die TU Dresden / CRTD mit Mitteln der Exzellenzinitiative und der Deutschen Forschungsgemeinschaft sowie durch einen Grant der Europäischen Union aus dem Programm H2020. Die Studie wurde unterstützt durch die Fakultät für Naturwissenschaften der Otto-von-Guericke-Universität Magdeburg, die Dresden International Graduate School for Biomedicine and Bioengineering (DIGS-BB) sowie das Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE), Dresden.

Wissenschaftliche Ansprechpartner:

Gabriel Berdugo-Vega
Tel: +49 (0)351 458 82200
Email: Gabriel.Berdugo@tu-dresden.de
Webpage: http://www.tu-dresden.de/crtd

Originalpublikation:

Nature Communications: „Increasing Neurogenesis Refines Hippocampal Activity and Rejuvenates Contextual Learning, Navigational Strategies and Memory Throughout Life”, Autoren: Gabriel Berdugo-Vega, Gonzalo Arias-Gil, Adrian Lopez-Fernández, Benedetta Artegiani, Joanna M. Wasielewska, Chi-Chieh Lee, Michael T. Lippert, Gerd Kempermann, Kentaroh Takagaki and Federico Calegari, https://www.nature.com/articles/s41467-019-14026-z

Janne Stolte | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: CRTD DZNE Gehirn Gehirnzellen Neuronen Stammzellen Universität Dresden Verjüngungskur

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Trockenstress – Biologen entschlüsseln SOS-Signal von Pflanzen
27.03.2020 | Universität Hohenheim

nachricht Der Venusfliegenfallen-Effekt: Neue Studie zeigt Fortschritte der Forschung an Immunproteinen
26.03.2020 | Jacobs University Bremen gGmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Künstliche Intelligenz findet das optimale Werkstoffrezept

Die möglichen Eigenschaften nanostrukturierter Schichten sind zahllos – wie aber ohne langes Experimentieren die optimale finden? Ein Team der Materialforschung der Ruhr-Universität Bochum (RUB) hat eine Abkürzung ausprobiert: Mit einem Machine-Learning-Algorithmus konnten die Forscher die strukturellen Eigenschaften einer solchen Schicht zuverlässig vorhersagen. Sie berichten in der neuen Fachzeitschrift „Communications Materials“ vom 26. März 2020.

Porös oder dicht, Säulen oder Fasern

Im Focus: Erdbeben auf Island über Telefonglasfaserkabel registriert

Am 12. März 2020, 10.26 Uhr, ereignete sich in Südwestisland, ca. 5 km nordöstlich von Grindavík, ein Erdbeben mit einer Magnitude von 4.7, während eines längeren Erdbebenschwarms. Wissenschaftlerinnen und Wissenschaftler des Deutschen GeoForschungsZentrums GFZ haben jetzt dort ein neues Verfahren zur Überwachung des Untergrunds mithilfe von Telefonglasfaserkabeln getestet.

Ein von GFZ-Forschenden aus den Sektionen „Oberflächennahe Geophysik“ und „Geoenergie“ durchgeführtes Online-Monitoring, das Glasfaserkabel des isländischen...

Im Focus: Quantenoptiker zwingen Lichtteilchen, sich wie Elektronen zu verhalten

Auf der Basis theoretischer Überlegungen von Physikern der Universität Greifswald ist es Mitarbeitern der AG Festkörperoptik um Professor Alexander Szameit an der Universität Rostock gelungen, photonische topologische Isolatoren als Lichtwellenleiter zu realisieren, in denen sich Photonen wie Elektronen verhalten, und somit fermionische Eigenschaften zeigen. Ihre Entdeckung wurde jüngst im renommierten Fachblatt „Nature Materials“ veröffentlicht.

Dass es elektronische topologische Isolatoren gibt – Festkörper die im Innern den elektrischen Strom nicht leiten, dafür aber umso besser über die Oberfläche –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

UN World Water Day 22 March: Water and climate change - How cities and their inhabitants can counter the consequences

17.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltweit einzigartig: Neue Anlage zur Untersuchung von biogener Schwefelsäurekorrosion in Betrieb

27.03.2020 | Architektur Bauwesen

Schutzmasken aus dem 3D-Drucker

27.03.2020 | Materialwissenschaften

Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

27.03.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics