Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Umprogrammierte Blutgefäße erleichtern Krebsausbreitung

01.03.2017

Um sich im Körper auszubreiten, nutzen Tumorzellen die Blutbahnen. Dazu müssen sie zunächst die Gefäßwand passieren. Wissenschaftler vom Deutschen Krebsforschungszentrum und der Medizinischen Fakultät Mannheim der Universität Heidelberg identifizierten nun einen Trick der Krebszellen: Sie aktivieren ein zelluläres Signal in den Gefäßwandzellen. Das erleichtert ihnen die Passage und fördert die Metastasierung. Diesen Vorgang konnten die Forscher bei Mäusen mit Antikörpern blockieren.

Blutgefäße spielen eine wichtige Rolle beim Wachstum und bei der Ausbreitung von Krebs. Die Zellen der Gefäßwand (Endothelzellen) und Krebszellen stehen in unmittelbarem Kontakt miteinander und beeinflussen sich gegenseitig.


Die Aktivierung des Notch1-Rezeptors auf Endothelzellen ist für Tumorzellen die Zauberformel „Sesam öffne dich“, um sich den Weg durch die Wand der Blutgefäße zu bahnen.

© Alberto Puime Otín

Diese Wechselwirkungen untersucht Andreas Fischer mit seinen Kollegen. Der Mediziner leitet eine Helmholtz-Hochschul-Nachwuchsgruppe, die sowohl im DKFZ als auch an der Medizinischen Fakultät Mannheim der Universität Heidelberg angesiedelt ist.

Fischer und sein Team hatten in Blutgefäßen von Tumoren überraschend große Mengen der aktivierten Form des Signalmoleküls Notch entdeckt. In Gefäßwandzellen aus Lungen-, Brust- oder Darmtumoren fanden sie deutlich mehr des aktivierten Rezeptors als in den entsprechenden gesunden Organen. Dabei stellten die Forscher fest: Je stärker Notch im Tumor-Endothel aktiviert war, desto weiter hatte sich der Krebs bereits ausgebreitet und desto schlechter war die Prognose für die Betroffenen.

Die Aktivierung des Rezeptorproteins Notch durch seine Bindungspartner ist ein wichtiger Kommunikationsweg, über den benachbarte Zellen Signale austauschen. Vom Fadenwurm über Insekten bis hin zum Menschen steuert Notch die Entstehung der Organe während der Embryonalentwicklung. Beim Erwachsenen reguliert das Signalprotein unter anderem die Aktivität der Blutstammzellen.

Dass fehlgesteuerte Notch-Signale Zellen entarten lassen können, etwa weiße Blutkörperchen zu Blutkrebs, konnten Krebsforscher schon vor einigen Jahren zeigen. Mit ihrer aktuellen Untersuchung haben Fischer und seine Kollegen jedoch erstmals nachgewiesen, dass auch die Notch-Aktivität von Zellen der unmittelbaren Umgebung des Tumors einen Einfluss auf die Krebserkrankung hat.

Fischer und Kollegen wiesen an Mäusen nach, dass es die Tumorzellen selbst sind, die im unmittelbaren Kontakt mit den Endothelzellen für die Notch-Aktivierung sorgen. Sie programmieren die Gefäßwandzellen für ihre eigenen Zwecke um und bereiten damit offenbar ihre Ausbreitung im Körper vor: Je stärker Notch im Tumor-Endothel aktiviert ist, desto mehr Krebszellen gelangen ins Blut und desto mehr Lungenmetastasen entstehen.

Überraschenderweise beschränkt sich die Notch-Aktivierung in tumortragenden Mäusen nicht auf die Blutgefäße im Tumor selbst, sondern betraf auch die Endothelzellen der Lunge. Offenbar schüttet der Tumor Signalstoffe aus, mit denen er die Ansiedelung seiner Metastasen vorbereitet.

Als Folge der Notch-Aktivierung steigern Endothelzellen die Produktion des Kontaktmoleküls VCAM1. Dieses Protein wirkt wie ein Druckknopf, der es den Krebszellen ermöglicht, sich an die Gefäßwand anzuheften und die Passage vorzubereiten. Zusätzlich erleichtert aktiviertes Notch den Krebszellen den Durchlass in die Blutbahn, indem es bestimmte dichtungsartige Strukturen zwischen den Gefäßwandzellen durchlässiger macht. Darüber hinaus bringt aktiviertes Notch die Endothelzellen dazu, Botenstoffe zu produzieren, die krebsfördernde Immunzellen in den Tumor locken.

„Zusammen ergeben die Ergebnisse ein eindeutiges Bild: Die Tumorzellen fördern auf vielfältige Weise ihre Ausbreitung im Körper, indem sie Notch aktiveren und damit die Endothelzellen zu ihren eigenen Zwecken umprogrammieren“, resümiert Andreas Fischer. „Daher wollten wir herausfinden, ob sich dieser verhängnisvolle Mechanismus unterbrechen lässt.“

Durch eine Blockade von Notch mit einem Antikörper, der aktuell in frühen klinischen Studien getestet wird, gelang es den Wissenschaftlern, in Mäusen die Ansiedlung von Krebszellen in der Lunge zu reduzieren. Auch die Blockade des Kontaktmoleküls VCAM1 mit einem Antikörper senkte die Anzahl von Lungenmetastasen und drosselte die Einwanderung krebsfördernder Immunzellen in den Tumor.

„Notch ist ein universelles Signalmolekül und lässt sich daher nur schlecht therapeutisch beeinflussen, ohne dabei lebenswichtige Prozesse zu stören“, sagt Andreas Fischer. „Aber ein gezielter kurzzeitiger Einsatz blockierender Antikörper könnte ein erfolgversprechender Ansatz sein, die gefährliche Ausbreitung von Tumoren zu unterdrücken. Das wollen wir mit unserer zukünftigen Arbeit weiterverfolgen.“

Elfriede Wieland, Juan Rodriguez-Vita, Sven S. Liebler, Carolin Mogler, Iris Moll, Stefanie E. Herberich, Elisa Espinet, Esther Herpel, Amitai Menuchin, Jenny Chang-Claude, Michael Hoffmeister, Christoffer Gebhardt, Hermann Brenner, Andreas Trumpp, Christian W. Siebel, Markus Hecker, Jochen Utikal, David Sprinzak, Andreas Fischer: Endothelial Notch1 activity facilitates metastasis. Cancer Cell 2017, DOI: 10.1016/j.ccell.2017.01.007

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Ansprechpartner für die Presse:

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42-2854
F: +49 6221 42-2968
E-Mail: S.Seltmann@dkfz.de

Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
E-Mail: S.Kohlstaedt@dkfz.de

E-Mail: presse@dkfz.de

www.dkfz.de

Dr. Stefanie Seltmann | Deutsches Krebsforschungszentrum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics