Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Testing the Efficacy of New Gene Therapies More Efficiently

21.03.2017

Using a new cellular model, innovative gene therapy approaches for the hereditary immunodeficiency Chronic Granulomatous Disease can be tested faster and cost-effectively in the lab for their efficacy. A team of researchers from the University of Zurich and the Children’s Hospital Zurich successfully achieved this using the ‘gene-scissor’ CRISPR/Cas9 technology. The aim is to treat severely affected patients in the near future using novel approaches.

Chronic Granulomatous Disease is a hereditary disease of the immune system. Due to a gene defect, phagocytes of affected patients are unable to kill ingested bacteria and fungi; causing life-threatening infections and excessive inflammatory reactions that have severe adverse consequences.


Due to a gene defect, phagocytes of patients with Chronic Granulomatous Disease are unable to kill ingested bacteria and fungi.

Image: ©Dlumen / iStock

Quelle: UZH

The disease can be cured by transplanting blood-forming stem cells from the bone marrow of healthy donors. Where no matching stem cell donor is available, gene therapy can be carried out, in a few locations worldwide. Before gene therapy is used clinically in patients, efficacy of treatment must be determined in the lab on human cells; cellular models are of utmost importance for this step.

Better Cell Model Developed Thanks to 'Gene Scissors'

Recently, a research team headed by Janine Reichenbach, a UZH professor and Co-Head of the Division of Immunology at the University Children’s Hospital Zurich, has developed a new cellular model that enables to test the efficacy of new gene therapies much more efficiently. "We used Crispr/Cas9 technology to change a human cell line so that the blood cells show the genetic change typical of a specific form of Chronic Granulomatous Disease", explains the pediatrician and immunologist.

In this way, the modified cells reflect the disease genetically and functionally. Until now, scientists had to rely on using patients' skin cells that they had reprogrammed into stem cells in the lab. This approach is laborious, and requires considerable time and money. "With our new testing system, this process is faster and cheaper, enabling us to develop new gene therapies for affected patients more efficiently", says Janine Reichenbach.

Already about ten years ago, the team of Janine Reichenbach initiated the worldwide first clinically successful gene therapy study for the treatment of children with Chronic Granulomatous Disease – headed at that time by UZH's now emeritus Professor Reinhard Seger. The principle was to isolate blood-forming stem cells from the patient's bone marrow, transfer a healthy copy of the diseased gene into these cells in the lab, and infuse the gene-corrected cells back into the blood of the patient. The corrected blood stem cells find their way back to the bone marrow where they engraft and produce healthy immune cells.

New ‘Gene Ferries’ Make Gene Therapy Safer

To transfer the healthy copy of the gene into diseased cells, until now modified artificial viruses have been used as transport vehicle for the correcting genes. Despite curing the primary disease, gene therapies using first generation viral gene correction systems are now outdated, due to the development of malignant cancer cells in some patients in European studies.

Janine Reichenbach's team currently works with a new improved ‘gene ferry’. "Today, we dispose of so-called lentiviral self-inactivating gene therapy systems that are efficient and, above all, that work more safely". The University Children’s Hospital Zurich is one of three European centers able to use this new gene therapy in an international clinical phase I/II study to treat patients with Chronic Granulomatous Disease (EU-FP7 program NET4CGD).

Future of Gene Therapy: Precise Repair of Defective Genes

For Janine Reichenbach's team, such new ‘gene ferries’ are only an intermediate step. In future, gene defects shall no longer be treated by adding a functioning gene using viral ‘gene ferries’, but instead are repaired with pinpoint precision using genome editing. Crispr/Cas9 is key here too.

However, it will need another five to six years until this 'precision gene surgery' is ready for clinical applications. Janine Reichenbach appears optimistic. "Within the framework of University Medicine Zurich, we have the technical, scientific and medical know-how on site to develop new therapies for patients with severe hereditary diseases faster and establish UZH as an international competence center of excellence for gene and cell therapies in the future."

Literature:
Dominik Wrona, Ulrich Siler, Janine Reichenbach. CRISPR/Cas9-generated p47phox-deficient cell line for Chronic Granulomatous Disease gene therapy vector development. Scientific Reports. March 13, 2017. DOI: 10.1038/srep44187

Contact:
Prof. Janine Reichenbach, M.D.
Pediatric Immunology
University Children’s Hospital Zurich
Phone: + 41 44 266 73 11
E-mail: janine.reichenbach@kispi.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2017/testing-gene-therapies-efficientl...

Kurt Bodenmüller | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt
28.05.2020 | Universität Konstanz

nachricht Forschung zur Vermeidung von Tumorschmerz beim Bauchspeicheldrüsenkrebs
28.05.2020 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ein wichtiger Schritt zum Neuromorphen Rechnen: richtungsweisende Arbeit aus Dresden

28.05.2020 | Materialwissenschaften

Wieso Radium-Monofluorid den Blick ins Universum fundamental verändern kann

28.05.2020 | Physik Astronomie

Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

28.05.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics