Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Täuschend einfach: Winzige Meerestiere leben in ausgeklügelter Symbiose mit Bakterien

11.06.2019

Trichoplax, eines der einfachsten Tiere der Welt, lebt in einer innigen und sehr spezialisierten Symbiose mit zwei Arten von Bakterien. Die eine, Grellia, ist mit parasitischen Bakterien verwandt, die Typhus und Rocky-Mountain-Fleckfieber verursachen. Dennoch scheint Grellia Trichoplax nicht zu schaden. Die zweite, Ruthmannia, sitzt in den Zellen, mit denen Trichoplax seine Nahrung verdaut. Die Trichoplax-Symbiose bietet einen spannenden Einblick in diese „Dunkle Mikroben-Materie“ der kaum bekannten Bakteriengruppen. Die Studie von Wissenschaftlern des Max-Planck-Instituts für Marine Mikrobiologie und der Universität Hawaii erscheint nun in der Zeitschrift Nature Microbiology.

Trichoplax ist eines der einfachsten Tiere, das man sich vorstellen kann. Es sieht aus wie ein unförmiger kleiner Tropfen. Studienautorin Nicole Dubilier sagt, es erinnert sie an einen Kartoffelchip. Trichoplax lebt in warmen Küstengewässern auf der ganzen Welt und grast mikroskopisch kleine Algen ab, die auf Sand und Felsen leben. Das winzige Tier findet sich auch, von Aquarianern zumeist unbemerkt, in fast jedem Meerwasseraquarium mit Korallen.


In der Falle: Bewachsene Trichoplax-Fallen, die im seichten Wasser unter einem Steg aufgehängt wurden.

Harald Gruber-Vodicka / Max-Planck-Institut für Marine Mikrobiologie


Trichoplax beim Fressen.

Michael Hadfield / University of Hawaii

Trichoplax gehört zusammen mit Schwämmen und Quallen zu einem der untersten Äste im Stammbaum der Tiere. Bis in die 70er Jahre war nicht einmal klar, ob Trichoplax überhaupt ein eigenständiges, ausgewachsenes Tier ist oder nur das Jungstadium einer Qualle.

Die Tiere messen etwa einen halben Millimeter im Durchmesser und haben weder Mund, noch Darm, noch andere Organe. Sie bestehen aus nur sechs verschiedenen Arten von Zellen. Diese Einfachheit macht Trichoplax zu einem beliebten Modellorganismus für Biologen.

WissenschaftlerInnen vom Max-Planck-Institut für Marine Mikrobiologie in Bremen, der Universität Hawaii und der North Carolina State Universität haben nun herausgefunden, dass Trichoplax doch nicht so simpel gestrickt ist, wie es scheint. Es lebt in einer ausgeklügelten Symbiose mit äußerst ungewöhnlichen Bakterien.

Weniger ist mehr

Schon vor etwa 50 Jahren beobachtete der deutsche Zoologe Karl Grell erstmals Bakterien im Inneren von Trichoplax. Doch seitdem hatte sich niemand weiter mit ihnen beschäftigt. Die Gruppe um Harald Gruber-Vodicka, Niko Leisch und Nicole Dubilier vom Max-Planck-Institut für Marine Mikrobiologie und Michael Hadfield von der Universität Hawaii hat die bakteriellen Untermieter von Trichoplax nun eingehend erforscht, indem sie ihre Genome sequenziert und mittels hochauflösender Mikroskopie untersucht haben, wo sie leben.

"Obwohl Trichoplax so einfach ist, finden in seinen Zellen zwei unterschiedliche und ungewöhnliche Bakterien Platz", sagt Gruber-Vodicka. "Beide Symbionten sind sehr wählerisch – oder zellspezifisch, wie wir es nennen. Sie leben jeweils in nur einer Art von Wirtszelle."

Grellia - Der erste Symbiont im endoplasmatischen Retikulum

Der Symbiont Grellia, benannt nach dem Zoologen Karl Grell, ist im endoplasmatischen Retikulum (ER) von Trichoplax zu Hause. Bisher kannte man keinen Symbionten, der dauerhaft im ER eines Tieres lebt. Dieses Zellorganell spielt eine zentrale Rolle bei der Produktion von Proteinen und Membranen. Nachzuweisen, dass Grellia wirklich im ER wohnt, war äußerst schwierig.

"Wir haben ein detailliertes dreidimensionales Modell des ER erstellt, um zu zeigen, dass Grellia darin lebt. Das gelang uns mithilfe des Elektronenmikroskops am Max-Planck-Institut für Molekulare Zellbiologie und Genetik in Dresden", erklärt Niko Leisch.

"Andere parasitäre Bakterien ahmen die Struktur des ER nach, um ihren Wirten vorzugaukeln, dass sie harmlos sind. Unsere Bilddaten zeigten jedoch eindeutig, dass Grellia tatsächlich im Inneren des ER seines Wirts lebt." Verblüffenderweise scheint Grellia, obwohl eng mit Parasiten verwandt, Trichoplax nicht zu schaden. "Grellia hat die nötigen Gene, um Energie von seinem Wirt zu stehlen. Aber es benutzt sie nicht", so Leisch.

Ruthmannia - Dunkle Mikroben-Materie im Blick

Der zweite Symbiont von Trichoplax, Ruthmannia, gehört zu einer erst kürzlich entdeckten Gruppe von Bakterien, den Margulisbakterien. "Bisher gehörten Margulisbakterien zur so genannten Dunklen Materie der Mikroben – die überwiegende Mehrheit der Mikroorganismen, die Biologen zwar durch Sequenzierung finden, aber nicht kultivieren können", erklärt Harald Gruber-Vodicka. "Wir haben sie noch nie beobachten können, obwohl ihre genetischen Spuren in Wasserproben auf der ganzen Welt zu finden sind."

Nun gelang es Gruber-Vodicka und Leisch, die ersten Bilder eines Margulisbakteriums zu machen. "Zum ersten Mal können wir ein Mitglied dieser Gruppe sehen. Für uns ist das genauso spannend wie das Foto eines Schwarzen Lochs." Dieser Symbiont lebt in Zellen, mit denen Trichoplax seine Algennahrung verdaut.

"Ruthmannia scheint nur Fette und andere Lipide der Algen zu verwerten, den Rest überlässt es seinem Wirt. Im Gegenzug versorgt Ruthmannia Trichoplax vermutlich mit Vitaminen und Aminosäuren." Nun, da Trichoplax in den Labors des Max-Planck-Instituts für Marine Mikrobiologie gedeiht, können die Autoren jederzeit an diesen rätselhaften Bakterien arbeiten.

Was kommt als nächstes?

"In dieser Studie haben wir uns mit den symbiotischen Partnern einer einzigen Trichoplax-Art beschäftigt", sagt Nicole Dubilier, Direktorin am Max-Planck-Institut für Marine Mikrobiologie. "Es gibt aber mindestens 20 weitere Arten. Unsere ersten Ergebnisse deuten darauf hin, dass jede Wirtsart ihre eigene, typische Garnitur von Symbionten hat. Wir sind schon sehr gespannt, diese erstaunliche Vielfalt und ihre Entwicklung weiter zu untersuchen. Diese winzigen Tiere sehen nicht nur aus wie Kartoffelchips, auch an ihrem Inhalt werden wir noch einiges zu Knabbern haben.“

Wissenschaftliche Ansprechpartner:

Dr. Harald Gruber-Vodicka
Abteilung Symbiose
Max-Planck-Institut für Marine Mikrobiologie, Bremen, Deutschland
Telefon: +49 421 2028-760
E-Mail: hgruber@mpi-bremen.de

Prof. Dr. Nicole Dubilier
Abteilung Symbiose
Max-Planck-Institut für Marine Mikrobiologie, Bremen, Deutschland
Telefon: +49 421 2028-932
E-Mail: ndubilier@mpi-bremen.de

Dr. Fanni Aspetsberger
Pressesprecherin
Max-Planck-Institut für Marine Mikrobiologie, Bremen, Deutschland
Telefon: +49 421 2028-947
E-Mail: faspetsb@mpi-bremen.de

Originalpublikation:

Harald R. Gruber-Vodicka, Nikolaus Leisch, Manuel Kleiner, Tjorven Hinzke, Manuel Liebeke, Margaret McFall-Ngai, Michael G. Hadfield, Nicole Dubilier: Two intracellular and cell type-specific bacterial symbionts in the placozoan Trichoplax H2. Nature Microbiology. DOI: 10.1038/s41564-019-0475-9

Weitere Informationen:

https://www.mpi-bremen.de/Page3587.html

Dr. Fanni Aspetsberger | Max-Planck-Institut für Marine Mikrobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamentenresistenz: Transportproteine vom Transport abhalten
17.06.2019 | Ruhr-Universität Bochum

nachricht Signale aus der Pflanzenzelle
14.06.2019 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics