Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Synthetische Biotechnologie ermöglicht nachhaltige Produktion bioaktiver Naturstoffe

07.06.2016

Die Natur stellt eine Vielzahl für den Menschen wertvoller Wirkstoffe bereit, die Palette reicht von Vitaminen über lebensnotwendige Fettsäuren bis hin zu krebshemmenden Substanzen. Viele dieser Stoffe sind schwierig aus der Natur zu gewinnen oder synthetisch herzustellen. Einen neuen Weg beschreiten Wissenschaftler der Technischen Universität München (TUM): Mit Methoden der Synthetischen Biotechnologie stellen sie Omega-3-Fettsäuren nachhaltig her und haben eine Strategie entwickelt, mit der sie nicht nur natürliche, sondern sogar ganz neuartige Arzneistoffe synthetisieren können.

In der Natur gibt es viele wertvolle Arznei- und Nährstoffe. Diese sind jedoch oft entweder schwer zugänglich oder ihre industrielle Gewinnung schadet den Tier- und Pflanzenpopulationen, in denen sie vorkommen. So enthält beispielsweise die Rinde der pazifischen Eibe (Taxus brevifolia) den Wirkstoff Taxol, der als Medikament gegen Brust-, Eierstock- und Lungenkrebs eingesetzt wird. Jedoch ist die Eibenart nicht weit verbreitet und geschützt.


Taxadien Synthase mit dem Substrat Geranylgeranyldiphosphat in der aktiven Tasche des Enzymes. Die grünen Punkte zeigen die katalytisch relevanten Mg2+-Ionen.

Bild: Max Hirte / TUM


Mitautor Felix Bracharz bei der Vorbereitung eines Hochdurchsatz-Nile Red Assay

Bild: Andreas Battenberg / TUM

Auch die lebensnotwendigen Omega-3-Fettsäuren, beispielsweise ein Bestandteil von Säuglingsnahrungen, werden derzeit vor allem aus Fischen und Krebstieren hergestellt – eine zusätzliche Belastung für die ohnehin schon stark beanspruchten marinen Ökosysteme.

Ziel der Arbeitsgruppe um Thomas Brück, Professor für Industrielle Biokatalyse an der Technischen Universität München, ist es daher, mit Hilfe von Methoden der Biochemie, Bioinformatik und Biotechnologie chemische Wertstoffe nachhaltig und doch in industriellen Mengen zu gewinnen.

„Gold“ aus Stroh – eine Hefe mit hohem Potential

Nun ist es Brück und seinem Team gelungen, die bislang nicht biotechnologisch genutzte Hefe Trichosporon oleaginosus genetisch so zu verändern, dass sie die essentiellen Omega-3-Fettsäuren Alpha-Linolensäure (ALA), Eicosapentaensäure (EPA) sowie entzündungshemmend wirkende konjugierte Linolensäuren (CLAs) herstellt.

Als Energiequelle kann die Hefe dabei Nährmedien auf Basis von fast allen in der Agrarwirtschaft anfallenden Abfällen wie Stroh, Holzspäne, Weizenkleie und sogar bisher ungenutzte marine Reststoffe wie Krabbenschalen verwerten. „Diese Hefe ist etwas Besonderes, da sie auch monomere Zuckerstoffe verwerten kann, die sonst nur sehr schwer abgebaut werden können“, erklärt Brück. „Wir gewinnen also aus Abfällen hochwertige chemische Stoffe, und das ohne die Umwelt zu belasten.“

Geraten Trichosporon oleaginosus-Zellen in der Natur unter Stress, beispielsweise durch Mangel an Stickstoff oder Phosphat, lagern sie Fette als Energiereserve ein. Zwar wächst die Hefe dann nicht mehr optimal, doch kann das in Form von Trigylceriden einlagerte Fett bis zu 70 Prozent ihres Trockengewichts erreichen.

In zukünftigen Projekten wollen die Wissenschaftler um Brück die ölbildende Hefe daher so weiter modifizieren, dass sie auch unter normalen Nährstoffbedingungen die gewünschten Fette in ausreichendem Maß herstellt, ohne das Ihr Wachstum gehemmt wird.

Von der Simulation zum maßgeschneiderten Enzym

Einen Schritt weiter geht eine Methodik, die die Wissenschaftler um Brück kürzlich in der renommierten Fachzeitschrift „Proceedings of the National Academy of Sciences“ (PNAS) vorstellten: Mit Hilfe molekularmechanischer Computersimulationen konnten sie die einzelnen Schritte aufklären, mit denen eine bestimmte Klasse von Enzymen Wirkstoffe herstellt. Zu diesen gehören auch Vorstufen des Krebsmedikaments Taxol.

Allein durch Simulationen am Computer gelang es Brück und seinem Team erstmals, sämtliche Zwischenschritte der an diesem Enzym ablaufenden komplexen Kaskade von Reaktionen korrekt vorherzusagen. Auf diese Weise konnten sie aufklären, wie das Enzym genau arbeitet und wie dessen Struktur und Funktion zusammenhängen. Mit klassischen biochemischen Methoden war dies zuvor nicht möglich gewesen.

„Dieses Vorgehen ist sehr vielversprechend, denn auf Basis der Simulationen können wir Enzyme gezielt verändern und die daraufhin entstehenden Produkte vorhersagen“, sagt Brück. „Wenn wir dann noch verschiedene solcher Enzyme miteinander verschalten, ist es sogar möglich, komplett neue Moleküle zu schaffen, die in der Natur gar nicht vorkommen.“

Durch Verschalten einer Diterpensynthase mit einer Hydroxylase-Reduktase in einem Escherichia coli-basierten Produktionsystem entwickelten die Wissenschaftlern eine effiziente Synthese des trihydroxylierten Diterpens Cyclooctatin, einem potenten Entzüngungshemmer.

Am Computer identifizierten sie eine für Diterpenmakrozyklen spezifische Reduktase im erst kürzlich erst kürzlich beschriebenen Genom des Bakteriums Streptomyces afghaniensis. Die biotechnologische Nutzung dieses Proteins ermöglichte es den Wissenschaftlern, die Ausbeute des Wirkstoffes im Vergleich zum nativen Produzenten um einen Faktor 43 zu erhöhen.

In Zukunft könnten Biotechnologen einmal ähnlich wie Ingenieure vorgehen, die am Computer die Produktionsschritte für ein neues Auto entwerfen. Mit dem Wissen der Synthetischen Biotechnologie könnten sie dann den Syntheseweg zu einem neuen Wirkstoff aus einer Kette von Reaktionen modifizierter Enzyme zusammenstellen. Das lange und sehr aufwändige „Austüfteln“ neuer Synthesewege im Labor, wie es heute notwendig ist, würde damit erheblich verkürzt.

Die aktuellen Forschungsarbeiten der Arbeitsgruppe Brück werden mit Mitteln der Europäischen Gemeinschaft (Projekt ChiBio), der Bundesministerien für Bildung und Forschung (Advanced Biomass Value, SysBioTerp, OMCBP) und für Wirtschaft (Projekt Bio@Jet) sowie der bayrischen Ministerien für Wissenschaft (Algenflugkraft), Wirtschaft (Algenflugkraft, Nachhaltige Produktion von Bioinsektiziden) und Umwelt (Geobiotechnologie und PHB) gefördert.

Aufgrund des enormen Potenzials dieser Methoden hat die Technische Universität München Anfang Mai den Lehr- und Forschungsschwerpunkt Synthetische Biotechnologie ins Leben gerufen. Die Werner Siemens-Stiftung unterstützt die Einrichtung des Schwerpunkts mit 11,5 Millionen Euro.

Publikationen:

P. Schrepfer, A. Buettner, C. Goerner, M. Hertel, J. van Rijn, F. Wallrapp, W. Eisenreich, V. Sieber, R. Kourist, T. Brück; Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases; PNAS, 2016, 113(8), E958-E967 – DOI: 10.1073/pnas.1519680113
Link: http://www.pnas.org/content/113/8/E958.abstract

Görner, C., Redai, V., Bracharz, F., Schrepfer, P., Garbe, D., & Brück, T. (2016). Genetic engineering and production of modified fatty acids by the non-conventional oleaginous yeast Trichosporon oleaginosus ATCC 20509. Green Chemistry, 2016, 18, 2037–2046 – DOI: 10.1039/c5gc01767j
Link: http://pubs.rsc.org/en/content/articlelanding/gc/2016/c5gc01767j#!divAbstract

Christian Görner, Patrick Schnepfer, Veronika Redai, Frank Wallrapp, Bernhard Loll, Wolfgang Eisenreich, Martin Haslbeck und Thomas Brück; Identification, characterization and molecular adaptation of class I redox systems for the production of hydroxylated diterpenoids;
Micobial Cell Factories (2016) 15:86 – DOI: 10.1186/s12934-016-0487-6
Link: https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-016-048...

Kontakt:

Prof. Dr. Thomas Brück
Technische Universität München
Professur für Industrielle Biokatalyse
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13253 – E-Mail: brueck@tum.de
Web: http://www.ibc.ch.tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Berichte zu: Biotechnologie Enzym Hefe Omega-3-Fettsäuren PNAS Produktion Taxol

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Weg entdeckt, um Killerzellen «umzuprogrammieren»
19.11.2019 | Universität Bern

nachricht Tiefseebakterien ernähren sich wie ihre Nachbarn
19.11.2019 | Max-Planck-Institut für Marine Mikrobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Im Focus: Der direkte Weg zur Phosphorverbindung: Regensburger Chemiker entwickeln Katalysemethode

Wissenschaftler finden effizientere und umweltfreundlichere Methode, um Produkte ohne Zwischenstufen aus weißem Phosphor herzustellen.

Pflanzenschutzmittel, Dünger, Extraktions- oder Schmiermittel – Phosphorverbindungen sind aus vielen Mitteln für den Alltag und die Industrie nicht...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Neu entwickeltes Glas ist biegsam

Eine internationale Forschungsgruppe mit Beteiligung der Österreichischen Akademie der Wissenschaften hat ein Glasmaterial entwickelt, das sich bei Raumtemperatur bruchfrei verformen lässt. Das berichtet das Team aktuell in "Science". Das extrem harte und zugleich leichte Material verspricht ein großes Anwendungspotential – von Smartphone-Displays bis hin zum Maschinenbau.

Gläser sind ein wesentlicher Bestandteil der modernen Welt. Dabei handelt es sich im Alltag meist um sauerstoffhaltige Gläser, wie sie etwa für Fenster und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Weg entdeckt, um Killerzellen «umzuprogrammieren»

19.11.2019 | Biowissenschaften Chemie

Supereffiziente Flügel heben ab

19.11.2019 | Materialwissenschaften

Energiesysteme neu denken - Lastmanagement mit Blockheizkraftwerk

19.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics