Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur und Funktion von Lichtrezeptor bei Cyanobakterien aufgeklärt

29.01.2020

Chemie: Veröffentlichung in PNAS

Bestimmte Proteine dienen Pflanzen und auch Cyanobakterien als Lichtrezeptoren. Das Team des Center for Structural Studies (CSS) der Heinrich-Heine-Universität Düsseldorf (HHU) konnte zusammen mit internationalen Partnern die Struktur und Wirkungsweise des Bakterienproteins und seiner lichtempfindlichen Stelle aufklären.


Anregungsformen des CBCR-Proteinkristalls: Grundzustand blau (links), lichtaktivierter Zustand pink (Mitte). Unter Röntgenstrahlen fällt der aktivierte pinke Kristall in den blauen Grundzustand.

HHU / Astrid Port

Die für das Verständnis der lichtinduzierten Anpassungen photosynthetisch aktiver Organismen wichtigen Ergebnisse veröffentlichten sie in der Fachzeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Pflanzen und Bakterien, die Photosynthese betreiben, benötigen lichtempfindliche Strukturen, um die Prozesse rund um die Photosynthese zu steuern. Zu diesen Steuerungen zählen zum Beispiel die Blattergrünung, die Anpassung an das konkret bei der Pflanze ankommende Lichtspektrum oder auch die Freisetzung von lichtabsorbierenden Pigmenten, wenn zu hohe oder schädliche Strahlung auf die Pflanze trifft.

Cyanobakterien sind darüber hinaus in der Lage, sich zu Orten mit optimalen Lichtverhältnissen zu bewegen.

Die Steueraufgaben übernehmen spezialisierte Proteine, die „Phytocrome“. Bei Cyanobakterien sind dies sogenannte Cyanobacteriochrome (kurz CBCR), die – im Vergleich zu Pflanzen – sehr klein sind und nur aus rund 180 Aminosäuren bestehen; typischerweise sind Lichtrezeptoren aus 600 und mehr Aminosäuren aufgebaut.

Dem Düsseldorfer Biochemiker Dr. Sander Smits und der Strukturbiologin Dr. Astrid Port vom Center for Structural Studies ist es gelungen, die Struktur und Funktionsweise des eigentlichen aktiven Zentrums des CBCR, der sogenannten GAF-Domäne, zu bestimmen (GAF steht für: cGMP-Phosphodiesterase, Adenylyl-Cyclases, und FhlA-Protein-Domäne). Sie arbeiteten dabei eng mit Kollegen aus Israel, China und Leipzig zusammen.

Sie fragen sich unter anderem, warum sich die Absorptionswellenlänge zwischen dem Grundzustand des Proteins und dem durch Licht angeregten Zustand deutlich von anderen Phytochromen unterscheidet. Beim untersuchten CBCR Slr1393g3 liegen zwischen den Absorptionsmaxima beider Zustände 110 nm: Der Grundzustand absorbiert maximal rotes Licht bei 650 nm, der angeregte Zustand grünes Licht von 540 nm.

Experimentell erzeugten sie Kristalle aus dem Protein, die sie dann an den Synchrotronstrahlungsquellen am DESY in Hamburg und am ESRF in Frankreich vermaßen. Mittels Röntgenstrukturanalyse entschlüsselten sie die Proteinstrukturen der verschiedenen Anregungszustände und ihren dreidimensionalen Aufbau.

In einer nachfolgenden Simulation fanden die Forscherinnen und Forscher, dass für die Unterschiede der Absorptionswellenlängen vor allem ein Vierringsystem im Protein verantwortlich ist, welches sich nach der Lichtanregung umkonfiguriert. Zuvor war angenommen worden, dass die Proteinumgebung um das Vierringsystem hierfür verantwortlich ist, was aber ausgeschlossen werden konnte.

„Es ist schon schwierig, Proteinkristalle für die Röntgenstrukturanalyse zu züchten“, so Dr. Astrid Port zur Arbeit im Labor: „Aber noch einmal aufwändiger wurde es, die Proteinkristalle für den lichtangeregten Zustand herzustellen, denn das musste in fast völliger Dunkelheit, nur bei schwachem Rotlicht, geschehen.“ Bei stärkerer Beleuchtung wären nämlich die Kristalle wieder in ihren Grundzustand zurückgefallen.

„Ein solches Projekt braucht einen langen Atem“, betont Dr. Sander Smits, der das CSS an der HHU leitet. „Seit 2014 bearbeiten wir das Protein, wir haben in den Jahren viel gelernt, vor allem im Hinblick auf den Umgang mit den höchst sensiblen Kristallen.“

Die Ergebnisse helfen dabei, den Vorgang von lichtinduzierten Prozessen zur Anpassung an die jeweilige Umwelt in Cyanobakterien noch genauer zu verstehen. Darüber hinaus kann das Protein möglicherweise auch in andere Organismen eingebracht werden, um mit ihm über Lichtsignale Prozesse künstlich auszulösen und zu steuern.

Das Center for Structural Studies (CSS)

Das CSS ist ein von der Deutschen Forschungsgemeinschaft (DFG) gefördertes Infrastruktur- und Servicezentrum der Mathematisch-Naturwissenschaftlichen Fakultät der HHU. Hier stehen Expertise und entsprechende Großgeräte für Projekte mit einem strukturellen Hintergrund zur Verfügung. Räumliche Auflösungen im atomaren Bereich sind möglich. Diese Projekte können sowohl selbstständig durch Forschungsgruppen durchgeführt werden als auch in Auftrag gegeben und von den Mitarbeiterinnen und Mitarbeitern des CSS bearbeitet werden.

Weitere Informationen: www.css.hhu.de

Originalpublikation:

Xiuling Xu, Astrid Port, Christian Wiebeler, Kai-Hong Zhao, Igor Schapiro, and Wolfgang Gärtner, Structural elements regulating the photochromicity in a cyanobacteriochrome. Proc Natl Acad Sci U S A. 2020 Jan 21. pii: 201910208

DOI: 10.1073/pnas.1910208117

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen
21.02.2020 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics