Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spermazellen sind passive Ladung bei Blütenpflanzen

19.06.2017

Erfolgreiche Kooperation der Universität Regensburg mit den Peking Universität und der Rutgers Universität

Die langjährige Kooperation zwischen der Universität Regensburg, der Peking Universität in Beijing (China) und der Rutgers Universität in New Jersey (USA) zeigt mit zwei hochrangigen Publikationen in der TOP-Biologie-Zeitschrift „Current Biology“ und in der TOP-Pflanzenzeitschrift „Nature Plants“ erste Erfolge.


Zwei Spermazellen (grün; Zellkerne in rot) werden als passive Ladung mit Hilfe eines „Hakens“ (rechts) im Pollenschlauch transportiert.

Foto: PD Dr. Stefanie Sprunck – Zur ausschließlichen Verwendung im Rahmen der Berichterstattung zu dieser Pressemitteilung.

Die Verschmelzung von Ei- und Spermazelle (Befruchtung) markiert bei den sexuellen Organismen den Beginn neuen Lebens und eines neuen Individuums. Bei den Blütenpflanzen ist dieser Prozess besonders komplex und beinhaltet eine doppelte Befruchtung, wobei eine Samenzelle mit der Eizelle verschmilzt woraus sich ein Embryo entwickelt und die zweite Spermazelle die so genannte Zentralzelle befruchtet, woraus das Endosperm entsteht.

Die beiden Befruchtungsprodukte sind die Hauptbestandteile pflanzlicher Samen und stellen somit die Ernährungsgrundlage zahlreicher Tiere und des Menschen dar. Eine weitere Besonderheit bei Blütenpflanzen stellt der Verlust der Mobilität der Spermazellen dar.

Während Spermazellen bei den meisten Tieren und beim Menschen beweglich sind und von der Eizelle der eigenen Art angelockt werden, haben Pflanzen in Anpassung an kalte und trockene Standorte neue Fortpflanzungsstrategien entwickelt. Ursprünglichere Pflanzen, wie Moose und Farne, die bevorzugt an feuchten Standorten wachsen, besitzen noch bewegliche Spermazellen, während Samenpflanzen, wie die Nadelbäume und die vorherrschenden Blütenpflanzen, die Spermazellen in Pollenkörner einschließen.

Spermazellen sind so nicht nur geschützt, sondern können auch durch Wind oder mit Hilfe von Tieren über große Distanzen transportiert werden. Gelangen die Pollenkörner auf Blüten der eigenen Art, keimen die Pollenkörner, und die Spermazellen werden mit Hilfe des Pollenschlauchs tief ins mütterliche Gewebe transportiert und im Eiapparat freigesetzt, wo es zur doppelten Befruchtung kommt.

Inwieweit Spermazellen bei Blütenpflanzen die Pollenschläuche und damit ihre Reise zum Eiapparat selbst regulieren wird seit langem debattiert. Mit Hilfe einer neuen Mutante, bei der teilweise Pollenschläuche ohne Spermazellen gebildet werden, konnten Forscher der Universität Regensburg, am Lehrstuhl für Zellbiologie und Pflanzenbiochemie, der Peking Universität in Beijing (China) und der Rutgers Universität in New Jersey (USA) jetzt diese Diskussion beenden und zeigen, dass Spermazellen eine rein passive Ladung darstellen.

Auch ohne Spermazell-Ladung keimen Pollenschläuche, dringen ins maternale Gewebe ein, werden vom Eiapparat angelockt und platzen, um ihre vermeintliche Ladung freizusetzen. Besondere Herausforderungen bei dieser Studie waren u. a. die Identifizierung einer geeigneten Mutante, daneben die Selektion von lebenden Pollenkörnern, die keine Spermazellen enthielten, sowie der Nachweis, dass es sich beim verbliebenen Kern im Pollenschlauch nicht um eine Vorläuferzelle von Spermazellen handelt.

Die Ergebnisse wurden kürzlich im Fachjournal „Nature Plants“ veröffentlicht. Publikation: DOI: 10.1038/nplants.2017.79.

Bereits im vergangen Jahr haben Forscher der drei beteiligten Universitäten über eine neue Gruppe von kleinen Proteinen (ENODLs oder ENs) berichtet, die spezifisch im mütterlichen Gewebe vorkommen und für die Spermazellfreisetzung im Eiapparat notwendig sind. Hierbei interagieren so genannte ENODLs mit dem zentralen Rezeptorprotein FERONIA, welches die Kommunikation zwischen ankommendem Pollenschlauch und Eiapparat vermittelt.
Diese Ergebnisse wurden im Fachjournal „Current Biology“ veröffentlicht. Publikation: DOI: 10.1016/j.cub.2016.06.053.

Die erfolgreiche Kooperation mit den internationalen Universitäten wird weiter ausgebaut durch den Austausch von Studierenden und Wissenschaftlern der beteiligten Institute. In einer weiteren Kooperation wird aktuell an der Rolle von kleinen, vom Pollenschlauch und Eiapparat sekretierten Peptiden und deren Rezeptoren geforscht. Hierzu werden sich ab August zwei Doktorandinnen der Peking Universität für ein Jahr an der Universität Regensburg aufhalten und im Gegenzug wird ein Doktorand der Universität Regensburg für mehrere Monate nach Beijing gehen. Ab dem kommenden Wintersemester wird auch Professor Dresselhaus in Beijing Studierende unterrichten. Besonders erfreulich ist dieser produktive Austausch auf internationaler Ebene mit zwei renommierten Instituten an Universitäten in China und USA im Bereich der Nachwuchswissenschaftler.

Ansprechpartner für Medienvertreter:

Prof. Dr. Thomas Dresselhaus
Universität Regensburg
Lehrstuhl für Zellbiologie und Pflanzenbiochemie
Tel.: 0941 943-3016
thomas.dresselhaus@ur.de

Petra Riedl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Veränderungen der Chiralität von Molekülen in Echtzeit beobachten
14.11.2019 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Präzise Schadstoffermittlung aus dem All
14.11.2019 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bauplan eines bakteriellen Kraftwerks entschlüsselt

Wissenschaftler der Universität Würzburg und der Universität Freiburg gelang es die komplexe molekulare Struktur des bakteriellen Enzyms Cytochrom-bd-Oxidase zu entschlüsseln. Da Menschen diesen Typ der Oxidase nicht besitzen, könnte dieses Enzym ein interessantes Ziel für neuartige Antibiotika sein.

Sowohl Menschen als auch viele andere Lebewesen brauchen Sauerstoff zum Überleben. Bei der Umsetzung von Nährstoffen in Energie wird der Sauerstoff zu Wasser...

Im Focus: Neue Möglichkeiten des Additive Manufacturing erschlossen

Fraunhofer IFAM Dresden demonstriert Fertigung von Kupferbau

Am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden ist es gelungen, mittels Selektivem Elektronenstrahlschmelzen...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hitzesommer, Überschwemmungen und Co. – Vor welchen Herausforderungen steht die Pflanzenzüchtung der Zukunft?

14.11.2019 | Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bauplan eines bakteriellen Kraftwerks entschlüsselt

14.11.2019 | Biowissenschaften Chemie

Eisfreie Gletscherbecken als Wasserspeicher

14.11.2019 | Geowissenschaften

Lichtimpulse mit wenigen optischen Zyklen durchbrechen die 300 W-Barriere

14.11.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics