Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Skelett der Chromosomen

26.08.2013
IMP-Forscher entdecken stabilisierende Funktion von Cohesin

Jan-Michael Peters und sein Team am Wiener Forschungsinstitut für Molekulare Pathologie (IMP) konnten nachweisen, dass Chromosomen eine Art Skelett besitzen. Die molekulare Stütze ist aus Cohesin-Proteinen aufgebaut. In der aktuellen Ausgabe des Wissenschaftsjournals NATURE beschreiben die Forscher ihre Entdeckung.


Grafische bearbeitete fluoreszenzmikroskopische Aufnahme von Zellkernen ohne Wapl-Funktion, in denen das Kohesin “Vermicelli”-Strukturen bildet. Die Zellkerne wurden nachträglich eingefärbt und unterschiedlich skaliert. IMP

In jeder Zelle des menschlichen Körpers ist eine gesamte Ausgabe der Erbinformation enthalten, abgespeichert in Form von DNA. Etwa dreieinhalb Meter dieses fadenförmigen Moleküls finden im Zellkern Platz, dessen Durchmesser jedoch nur einen hundertstel Millimeter beträgt. Proportional vergrößert entspräche das einem Fußball, in dem ein 150 Kilometer langer Strang verstaut werden muss. Wie die Zelle diese Verpackungsaufgabe löst, verstehen Wissenschaftler bisher nur sehr wenig.

Zellen als Verpackungskünstler

Relativ gut untersucht sind die Histon-Proteine, um die sich die DNA wie um eine Spule legt und platzsparend aufwickelt. Mit dieser Art der Verpackung beschäftigt sich eine eigene Disziplin, die Epigenetik. Doch auch einfache Organismen ohne Histone müssen ihr Erbgut stark komprimieren, und auch in menschlichen Zellen können die Histone die DNA vermutlich alleine nicht verpacken.

Eine Arbeitsgruppe um IMP-Direktor Jan-Michael Peters konnte nun nachweisen, dass ein Protein-Komplex namens Cohesin wesentlich dazu beiträgt, DNA in einer kompakten Form zu stabilisieren. Cohesin ist evolutionär sehr alt und findet sich bereits in Bakterien, die noch ohne Zellkern auskommen. Es könnte also eine sehr ursprüngliche Funktion bei der Strukturierung der DNA haben.

Den Zellbiologen ist Cohesin bereits bekannt. Der Komplex ist für die korrekte Aufteilung der Schwesterchromatiden bei der Zellteilung mitverantwortlich. Seine Untereinheiten bilden dabei einen molekularen Ring, der die zuvor verdoppelten Chromosomen so lange umschließt, bis der exakte Zeitpunkt der Trennung gekommen ist. Die Struktur und die Funktion des Cohesin-Komplexes bei der Zellteilung wurden erstmals 1997 am IMP entdeckt und seitdem genauer untersucht.

Dass die Architektur der Chromosomen auch zwischen den Zellteilungen auf Cohesin angewiesen ist, war bisher nicht bekannt und wurde nun in einem indirekten Verfahren nachgewiesen. Der Biologe Antonio Tedeschi aus dem Team von Jan-Michael Peters untersuchte Zellen, in denen das Protein Wapl experimentell stillgelegt worden war. Dieses Molekül kontrolliert, wie eng sich Cohesin mit DNA verbindet. Fehlt Wapl, so ist die Bindung von Cohesin an DNA ungewöhnlich stabil. Als Folge davon können diese Zellen ihre Gene nicht zum richtigen Zeitpunkt ablesen und sich nicht teilen.

Vermicelli stützen Chromosomen

Bei der mikroskopischen Analyse dieser Zellen entdeckte Tedeschi in den Zellkernen lange, fadenförmige Strukturen aus Cohesin, die er „Vermicelli“ taufte (italienisch für ‚kleine Würmer’). Jedem Chromosom ließ sich einer dieser Fäden zuordnen. Daraus schließen die Forscher, dass Chromosomen eine Art Skelett besitzen, das im Wesentlichen aus Cohesin besteht.

„Wir nehmen an, dass Cohesin für die Chromosomen eine ähnliche Funktion hat wie die Knochen für den Bewegungsapparat“, meint Jan-Michael Peters. „Die Stabilität unseres Körpers hängt, wenn auch indirekt, vermutlich ebenso vom Cohesin-Skelett der Chromosomen ab wie vom knöchernen Skelett.“

Wie sehr wir auf die einwandfreie Funktion von Cohesin angewiesen sind, wird bei geringsten Schädigungen des Systems offensichtlich. Einige seltene Erbkrankheiten werden mit Mutationen im Cohesin-Gen in Verbindung gebracht. Die fehlerhafte Struktur des Moleküls führt zu gravierenden Entwicklungsstörungen und starken gesundheitlichen Einschränkungen. Derzeit stehen jedoch noch keine kausalen Therapieoptionen zur Verfügung.

Originalpublikation: Wapl is an essential regulator of chromatin structure and chromosome segregation. Antonio Tedeschi et al. Doi: 10.1038/nature12471

Über das IMP
Das Forschungsinstitut für Molekulare Pathologie betreibt in Wien biomedizinische Grundlagenforschung und wird dabei maßgeblich von Boehringer Ingelheim unterstützt. Mehr als 200 ForscherInnen aus über 30 Nationen widmen sich der Aufklärung grundlegender molekularer und zellulärer Vorgänge, um komplexe biologische Phänomene im Detail zu verstehen und Krankheitsmechanismen zu entschlüsseln.
Kontakt
Dr. Heidemarie Hurtl
IMP Communications
Dr. Bohr-Gasse 7
A-1030 Wien
Tel.: +43 (0)1 79730 3625
Mobil: +43 (0)664/8247910
hurtl@imp.ac.at
Wissenschaftlicher Kontakt
Dr. Jan-Michael Peters
Jan-michael.peters@imp.ac.at

Dr. Heidemarie Hurtl | idw
Weitere Informationen:
http://www.imp.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht „Kiss and Run“ zur Abfallverwertung in der Zelle
14.02.2020 | Universitätsmedizin Mannheim

nachricht Kurze Impulse mit großer Wirkung
14.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Kiss and Run“ zur Abfallverwertung in der Zelle

14.02.2020 | Biowissenschaften Chemie

Kurze Impulse mit großer Wirkung

14.02.2020 | Biowissenschaften Chemie

ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze

14.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics