Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Signale aus der Pflanzenzelle

14.06.2019

Zwei Wissenslücken sind geschlossen: Die Vakuolen von Pflanzenzellen lassen sich elektrisch erregen, und der Ionenkanal TPC1 ist daran beteiligt. Die Funktion dieses Kanals, der auch beim Menschen vorkommt, war bisher unbekannt.

Vieles läuft im Organismus einer Pflanze nicht anders ab als beim Menschen: In Getreide, Mais und Co. verständigen sich die Zellen und Gewebe ebenfalls durch elektrische Signale. Aus der jeweiligen Form und Frequenz der Signale beziehen die Pflanzen unterschiedliche Informationen. Sie reagieren damit zum Beispiel auf Hitze und Kälte, auf zu hohe Lichtintensitäten oder auf Fraßfeinde.


Die Aktivität des Ionenkanals TPC1 in der Vakuolenmembran (gelb) ist für die elektrische Erregbarkeit der Vakuole essentiell.

(Bild: Dawid Jaślan / Universität Würzburg)

Frisst etwa eine Raupe das Blatt einer Wildpflanze an, schickte diese ein elektrisches Signal an die Blätter, die noch nicht befallen sind. Dort löst das Signal Abwehrreaktionen aus: In der ganzen Pflanze werden dann Bitter- oder Giftstoffe gebildet.

Diese chemische Keule wirkt nach einiger Zeit – die Raupe hört auf zu fressen oder stirbt. Den modernen Nutzpflanzen allerdings wurde die Fähigkeit, Bitterstoffe zu bilden, aus geschmacklichen Gründen weggezüchtet. Darum kommt bei einem Raupenbefall auf Feldern der chemische Pflanzenschutz zum Einsatz.

Was die elektrische Kommunikation der Pflanzen angeht, haben Forscher der Julius-Maximilians-Universität (JMU) Würzburg jetzt eine Wissenslücke geschlossen. Sie fanden heraus, dass der Ionenkanal TPC1 an der elektrischen Erregbarkeit der Pflanzenzelle beteiligt ist.

Bislang war nicht genau bekannt, welche Funktion dieser Kanal überhaupt erfüllt. Der Züchtung eröffnet das auf lange Sicht vielleicht neue Wege zu Pflanzen, die resistenter gegen Schädlinge, Hitze oder Trockenheit sind – diese Eigenschaften wären angesichts des Klimawandels von Vorteil.

Publikation in Nature Communications

Ihre Ergebnisse stellen die JMU-Forscher um den Biophysiker Professor Rainer Hedrich jetzt in der angesehenen Zeitschrift „Nature Communications“ vor. Hedrich entdeckte den Ionenkanal TPC1 Mitte der 1980er-Jahre, damals als Postdoc beim Nobelpreisträger Erwin Neher in Göttingen. Über die Jahre hat er den Kanal intensiv erforscht und dabei fast all dessen Eigenschaften beschrieben.

Hedrichs neue Publikation schließt eine weitere Wissenslücke: Bislang war bekannt, dass die Zellmembranen der Pflanzen elektrisch erregbar sind. Nun steht fest, dass das auch für die Membran gilt, welche die Zentralvakuole der Pflanzenzellen umschließt – und auch hier ist TPC1 essentiell beteiligt. Die Vakuole ist ein Innenraum, der mit einer wässrigen Lösung gefüllt ist und bis zu 90 Prozent des Volumens einer Pflanzenzelle einnehmen kann. Sie dient vor allem als Vorratskammer, in der Nährstoffe gelagert sind.

Elektrischer Reiz geht mit Kalziumwelle einher

Wie entstehen elektrische Signale in der Membran der Vakuole? Wird eine Pflanze angefressen, wird in dem verletzten Blatt neben dem elektrischen Impuls auch eine Kalziumwelle losgetreten. „Beide Signale verstärken sich gegenseitig, und dadurch kann sich der Reiz in der ganzen Pflanze ausbreiten“, erklärt Hedrichs Kooperationspartner Ingo Dreyer, Professor an der University Talca in Chile.

Bei Pflanzen mit defektem TPC1 breitet sich die Kalziumwelle langsamer oder gar nicht aus. „Auf Grund dieses Befundes haben wir die Eigenschaften der Vakuole mit der Patch-Clamp-Technik untersucht“, so Hedrich. Dabei stellte sich heraus, dass sich Vakuolen ohne TPC1 weder durch Reizstrom noch durch eine Kalziumerhöhung elektrisch erregen lassen. Bei einer hyperaktiven Mutante von TPC1 dagegen wollte die Erregung gar nicht mehr abklingen. „Durch diese und weitere Analysen konnten wir das Verhalten der Vakuole mathematisch modellieren und noch unbekannte Eigenschaften der Vakuolenkanäle vorhersagen“, so Dreyer.

Struktur und Funktionsweise des Ionenkanals ermittelt

„Unsere Entdeckung ist auch für die medizinische Forschung interessant“ sagt Hedrich. Der Grund: Verwandte des TPC1-Kanals wurden auch beim Menschen gefunden. Welche Aufgabe der Kanal in den winzigen Membranvesikeln, den Endosomen unserer Zellen, erfüllt, sei noch nicht endgültig verstanden. Deshalb frage man auch in der Medizin nach Gemeinsamkeiten in Struktur und Funktion von pflanzlichem und menschlichem TPC1.

„Um hier Antworten zu liefern, haben US-Wissenschaftler zu unseren Patch-Clamp-Messungen hochauflösende Röntgen-Struktur-Analysen durchgeführt. So wurde der molekulare Bauplan ermittelt, der der Kanalfunktion zu Grunde liegt. Damit gehört TPC1 zu den heute am besten verstandenen spannungsabhängigen Ionenkanälen“, sagt der JMU-Professor.

TPC1 besteht aus zwei identischen Einheiten. Lagern diese sich zu einem Paar zusammen, formt sich ein Komplex, der in seinem Zentrum einen Ionenkanal bildet, der auf Spannung und Kalziumionen reagiert. Auf der Zellplasmaseite von TPC1 liegt eine Kalzium-Bindestelle für die Kanalaktivierung, auf der Vakuoleninnenseite gibt es eine zweite Bindestelle. Wird die Kalzium-Konzentration innen zu hoch, wird der Kanal geblockt und die Vakuole verliert ihre elektrische Erregbarkeit.

TPC1 in der Evolution und im Klimawandel

„Wir haben uns auch gefragt, wann die Kalzium-abhängigen TPC1-Funktionen erstmals bei Pflanzen aufgetreten sind“, so Hedrich. Erstmals war das offenbar bei Moosen der Fall. „Jetzt wollen wir herausfinden, ob TPC1 auch in frühen Vorfahren unserer Kulturpflanzen für die elektrische Erregbarkeit zuständig ist und ob die Verpflanzung eines Algen- oder Moos-TPC1 den Funktionsausfall in Mutanten moderner Pflanzen heilen kann.“

Weiterhin haben die Forscher festgestellt, dass es Pflanzenfamilien gibt, deren Mitglieder sich stark in der Ausprägung einzelner Kanalfunktionen unterscheiden. Den Grund für diese Unterschiede wollen sie nun auf molekularer Ebene verstehen. Sie möchten auch prüfen, ob die kleinen Unterschiede die Stressanpassung befördern.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Rainer Hedrich, Lehrstuhl für Botanik I (Pflanzenphysiologie und Biophysik), Universität Würzburg, T +49 931 31-86100, hedrich@botanik.uni-wuerzburg.de

Originalpublikation:

„Voltage-dependent gating of SV channel TPC1 confers vacuole excitability“, Dawid Jaślan, Ingo Dreyer, Jinping Lu, Ronan O’Malley, Julian Dindas, Irene Marten, Rainer Hedrich. Nature Communications, 14. Juni 2019, DOI: 10.1038/s41467-019-10599-x

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Versteckte Dynamik in neuronalen Netzwerken entdeckt
16.07.2019 | Forschungszentrum Jülich

nachricht Internationales Forschungsteam entwickelt Programm zur Vorhersage neuer Wirkstoffe
16.07.2019 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryozyten als „Türsteher“ und Regulatoren der Zellmigration im Knochenmark

In einer neuen Studie zeigen Wissenschaftler der Universität Würzburg und des Universitätsklinikums Würzburg, dass Megakaryozyten als eine Art „Türsteher“ auftreten und so die Eigenschaften von Knochenmarksnischen und die Dynamik der Zellmigration verändern. Die Studie wurde im Juli im Journal „Haematologica“ veröffentlicht.

Die Hämatopoese ist der Prozess der Bildung von Blutzellen, der überwiegend im Knochenmark auftritt. Das Knochenmark produziert alle Arten von Blutkörperchen:...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet

Supraleitende Hochfrequenzkavitäten können Elektronenpakete in modernen Synchrotronquellen und Freien Elektronenlasern mit extrem hoher Energie ausstatten. Zurzeit bestehen sie aus reinem Niob. Eine internationale Kooperation hat nun untersucht, welche Vorteile eine Beschichtung mit Niob-Zinn im Vergleich zu reinem Niob bietet.

Zurzeit ist Niob das Material der Wahl, um supraleitende Hochfrequenzkavitäten zu bauen. So werden sie für Projekte wie bERLinPro und BESSY-VSR eingesetzt,...

Im Focus: Künstliche Intelligenz löst Rätsel der Physik der Kondensierten Materie: Was ist die perfekte Quantentheorie?

Für einige Phänomene der Quanten-Vielteilchenphysik gibt es mehrere Theorien. Doch welche Theorie beschreibt ein quantenphysikalisches Phänomen am besten? Ein Team von Forschern der Technischen Universität München (TUM) und der amerikanischen Harvard University nutzt nun erfolgreich künstliche neuronale Netzwerke für die Bildanalyse von Quantensystemen.

Hund oder Katze? Die Unterscheidung ist ein Paradebeispiel für maschinelles Lernen: Künstliche neuronale Netzwerke können darauf trainiert werden Bilder zu...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auswandern auf Terra-2?

15.07.2019 | Veranstaltungen

Hallo Herz! Wie kommuniziert welches Organ mit dem Herzen?

12.07.2019 | Veranstaltungen

Schwarze Löcher und unser Navi im Kopf: Wissenschaftsshow im Telekom Dome in Bonn

11.07.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Versteckte Dynamik in neuronalen Netzwerken entdeckt

16.07.2019 | Biowissenschaften Chemie

Fraunhofer: What’s next?

16.07.2019 | Messenachrichten

GFOS auf der Zukunft Personal Europe: Workforce Management weitergedacht

16.07.2019 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics