Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Seit wann kann man Luftschall hören?

30.06.2015

Einige Vorfahren der Säugetiere, die die Erde vor 260 Mio. Jahren bevölkerten, konnten bereits Schall aus der Luft hören. Denn sie verfügten schon über ein Trommelfell am Unterkiefer und eine Gehörschnecke – eine wesentliche Voraussetzung für das Entschlüsseln akustischer Reize. Den Anfängen unseres Hörsinns spürte Michael Laaß von der Universität Duisburg-Essen (UDE) nach und veröffentlichte seine Ergebnisse nun in einer renommierten Fachzeitschrift.

Laaß: „Dass wir Schall aus der Luft wahrnehmen können, verdanken wir u.a. unserem Trommelfell. Die akustischen Signale werden dann mit Hilfe des Mittelohrs verstärkt und in der Gehörschnecke zu Nervenimpulsen umgewandelt, damit diese im Gehirn verarbeitet werden können.“ Da alle Landwirbeltiere auf aquatische Vorfahren zurückgehen, konnten die ersten dieser Art allenfalls nur Bodenerschütterungen mit Hilfe des Unterkiefers „hören“, ähnlich wie dies heute bei einigen Schlangen funktioniert. Unklar war bislang, so Laaß, ob und ab wann sich bei den Säugetiervorfahren, den Therapsiden, bereits ein Trommelfell und ein schallverstärkendes Mittelohr entwickelten.


Urzeitlicher Tierschädel

© UDE

Schon vor fast 200 Jahren fand man heraus, dass unsere Gehörknöchelchen, Hammer und Amboss, den Knochen entsprechen, welche bei heutigen Reptilien und bei den Vorläufern der Säugetiere das Unterkiefergelenk bilden. Im Laufe der Evolution lösten sich diese Knochen vom Schädel und Unterkiefer, dienten dann ausschließlich zum Hören und es entstand ein neues Kiefergelenk. Laaß:“ Daher war fraglich, ob die Therapsiden schon effektiv Luftschall hören konnten. Ihr robust gebautes Kiefergelenk hätte dann eine Doppelfunktion erfüllen müssen: Kauen und Geräusche weiterleiten.“

Für seine Dissertation untersuchte Laaß die Ohrregion eines 260 Mio. Jahre alten Schädels des Therapsiden Pristerodon aus Südafrika mit Hilfe der Neutronentomographie. Dabei gelang ihm der früheste Nachweis einer Gehörschnecke bei den Ahnen der Säugetiere. Darüber hinaus konnte er die Funktionsweise des Mittelohrs entschlüsseln. Laaß: „Wenn die Kiefermuskulatur entspannt war, konnten feine Schwingungen vom Unterkiefer über das Kiefergelenk hinweg zum Innenohr übertragen werden. Außerdem war das Mittelohr des Pristerodon bereits in der Lage, Luftschall ausreichend zu verstärken und damit hörbar zu machen.“

Anatomische Untersuchungen legen zudem nahe, dass Pristerodon bereits eine aufrechtere Körperhaltung besaß. Sein Unterkiefer hatte also seltener Bodenkontakt, so dass das Hören seismischer Signale kaum mehr möglich war. Laaß: „Dies könnte der Grund dafür sein, dass es die Fähigkeit entwickelte, Luftschall zu hören. Dies war schlicht lebensnotwendig, um rechtzeitig Raubtiere wahrnehmen zu können oder mit Artgenossen zu kommunizieren.“

Originalpublikation: Laaß, Michael 2015. The origins of the cochlea and impedance matching hearing in synapsids. Acta Palaeontologica Polonica. doi: http://dx.doi.org/10.4202/app.00140.2014

Weitere Informationen: Michael Laaß, Tel. 0176/617 55 621, michael.laass@gmx.de

Redaktion: Beate Kostka, Tel. 0203/379-2430

Weitere Informationen:

http://dx.doi.org/10.4202/app.00140.2014

Beate Kostka | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-duisburg-essen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Die wahrscheinlich kleinsten Stabmagnete der Welt
17.10.2019 | Friedrich-Schiller-Universität Jena

nachricht Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination
17.10.2019 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics