Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In der Schwebe: Biologen untersuchen, warum Nervenzellen im All langsamer sind

08.04.2013
Versuchsreihen mit Flugzeug, Rakete und Raumkapsel / Forscher der Universität Hohenheim geben über Online-Tagebücher Einblicke in ihre Arbeit

Für Astronauten kann das schnell gefährlich werden: In der Schwerelosigkeit übertragen Nervenzellen Signale langsamer als auf der Erde. Bis heute ist nicht näher bekannt, weshalb. Mit aufwändigen Versuchsreihen in Flugzeugen, Raketen und Raumkapseln wollen Wissenschaftler der Universität Hohenheim dem Phänomen auf die Spur kommen.

Einblicke in ihre Forschung geben sie in Online-Tagebüchern auf: https://membranphysiologie.uni-hohenheim.de/69703. Das Bundesministerium für Wirtschaft und Technologie fördert das Forschungsprojekt mit über 350.000 Euro. Damit gehört es zu den Schwergewichten der Forschung an der Universität Hohenheim.

Die nächste Parabelflugkampagne des Deutschen Zentrums für Luft- und Raumfahrt (DLR) startet am 15. April 2013 in Bordeaux. Am 23. April steigt der Airbus A300 „Zero-G“ steil in den Himmel auf und erreicht in neun Kilometern Höhe seine maximale Flughöhe. An dieser Stelle leiten die Piloten umgehend den Sinkflug ein. Das Flugzeug stürzt 3.000 Meter in die Tiefe. An Bord herrscht 22 Sekunden lang Schwerelosigkeit. Dann steigt das Flugzeug erneut steil auf. So geht das fünfmal hintereinander.

Danach fliegt der Airbus bis zu zehn Minuten auf einer geraden Flugbahn. Nun haben die 40 Wissenschaftler an Bord – Biologen, Chemiker, Physiker und Mediziner – Zeit, ihre Experimente anzupassen und auf die nächsten fünf Parabeln vorzubereiten. Am Ende des Tages haben sie 31 geflogene Parabeln hinter sich – und genug Daten gesammelt für ihre Forschungsarbeit.

Dr. Florian Kohn, Mitarbeiter im Fachgebiet Membranphysiologie der Universität Hohenheim, ist einer der Wissenschaftler an Bord des Airbus. Er untersucht, wie Nervenzellen in der Schwerelosigkeit funktionieren: „Russische Kosmonauten waren früher oft monatelang im All“, sagt Dr. Kohn. „Es wurde unter anderem festgestellt, dass in der Schwerelosigkeit die Leitfähigkeit von Nerven, und damit die Reaktionsfähigkeit verlängert ist.“ Bis heute sei nicht restlos geklärt, weshalb.

Tumorzellen sterben in der Schwerelosigkeit verstärkt ab

„Klar ist bisher nur, dass die Signalübertragung in Zellen in der Schwerelosigkeit verändert ist“, erklärt Dr. Kohn. Als Teil der Ursache für die verlangsamte elektrische Aktivität in der Schwerelosigkeit, vermutet er die Beteiligung des sogenannten Zytoskeletts. Dessen Hauptfunktion bestehe darin, die Zelle zu stützen und ihre Form zu wahren. Darüber hinaus fungiere es als Verbindung zwischen Zellmembran und -kern.

„Offenbar reagiert das Zytoskelett einer Nervenzelle umgehend auf veränderte Schwereverhältnisse“, sagt Dr. Kohn. „Es passt sich an.“ Allerdings sei noch offen, wie und weshalb sich das auf die Signalübertragung auswirkt.

Dr. Claudia Ulbrich, ebenfalls Mitarbeiterin im Fachgebiet Membranphysiologie der Universität Hohenheim, hat bei Parabelflügen noch eine ganz andere Beobachtung gemacht: „Menschliche Tumorzellen sterben in der Schwerelosigkeit in erhöhter Zahl ab. Offenbar erkennen sie, dass sie krank sind und zerstören sich mittels Apoptose selbst.“ Auch dabei spielt das Zytoskelett vermutlich eine zentrale Rolle. Aber welche?

„Krebskranke zur Genesung ins Weltall zu schießen, sei aber nicht unbedingt eine gute Idee“, sagt die Tierärztin schmunzelnd. „Leider sterben auch gesunde Zellen in der Schwerelosigkeit vermehrt ab. Auch das Immunsystem ist negativ beeinflusst.“

Raumkapsel mit menschlichen Nervenzellen soll 2015 an die ISS andocken

Um solche Rätsel lösen zu können, sind 22 Sekunden Schwerelosigkeit im Parabelflug nicht genug. Deshalb soll Ende 2014 von der schwedischen Abschussbasis Esrange bei Kiruna eine unbemannte Rakete 250 Kilometer in die Erdatmosphäre aufsteigen, um dann minutenlang im freien Fall wieder auf die Erde zurückkehren.

„An Bord werden Zellkultur-Gefäße mit menschlichen Nervenzellen sein – und ein Mikroskop, das die Zellen während des Fluges filmt und hoch aufgelöste Fotos, sowie Videos zu uns auf die Erde sendet“, sagt Dr. Kohn. Gefahr für Anwohner bestehe bei dem Experiment nicht, versichert er. Ein Fallschirm bremst die Rakete so weit ab, dass sie weich landet, und die Proben unversehrt bleiben. Außerdem gebe es weit und breit keine Siedlungen.

Medikamente gegen verlangsamte Reaktionsfähigkeit

Noch höher hinaus soll es 2015 gehen: Dann, so hoffen die beiden Wissenschaftler von der Universität Hohenheim, soll eine Raumkapsel zur internationalen Raumstation ISS fliegen und dort andocken. Dr. Kohn und Dr. Ulbrich könnten dann zwei Wochen lang von der Erde aus beobachten, wie sich menschliche Nervenzellen in der Schwerelosigkeit verhalten und entwickeln.

Ob sich Zellen auch in der Schwerelosigkeit normal entwickeln, will Dr. Kohn herausfinden: „Es könnte ja sein, dass irgendwann in ferner Zukunft tatsächlich mal Kinder im Weltall geboren werden und aufwachsen“, sagt der Forscher.
Mit ihrer Forschung könnten sich Astronauten in Zukunft ohne verzögerte Reaktionsfähigkeit für längere Zeit im Weltall aufhalten: „Wenn bekannt ist, warum die Signalübertragung in Nervenzellen bei Schwerelosigkeit verzögert abläuft“, erklärt Dr. Kohn, „ist es grundsätzlich möglich, Medikamente dagegen zu entwickeln.“

Interessierte können die Flüge im Internet mitverfolgen. Dr. Ulbrich und Dr. Kohn werden zu den verschiedenen Kampagnen Online-Tagebücher führen, in denen die beiden Forscher ihre Eindrücke und Gedanken festhalten – und erste Ergebnisse vorstellen: https://membranphysiologie.uni-hohenheim.de/69703

Hintergrund: Forschungsprojekt

„Signalübertragung und -kaskaden in menschlichen Zellen unter variablen Schwerkraftbedingungen“ heißt das Forschungsprojekt von Dr. Kohn und Dr. Ulbrich. Die beiden Wissenschaftler von der Universität Hohenheim gehören zu den jüngsten Forschern, die beim DLR ein großes wissenschaftliches Projekt leiten. Es ist zum 1. Januar 2013 angelaufen und endet nach drei Jahren am 31. Dezember 2015. Das Bundesministerium für Wirtschaft und Technologie unterstützt das Forschungsprojekt mit über 350.000 Euro.

Hintergrund: Schwergewichte der Forschung

Rund 27 Millionen Euro an Drittmitteln akquirierten Wissenschaftler der Universität Hohenheim im vergangenen Jahr für Forschung und Lehre. In loser Folge präsentiert die Reihe „Schwergewichte der Forschung“ herausragende Forschungsprojekte mit einem Drittmittelvolumen von mindestens 250.000 Euro bei den Experimental- bzw. 125.000 Euro bei den Buchwissenschaften.

Kontakt für Medien:
Dr. Florian Kohn (Projektleiter), Universität Hohenheim, Fachgebiet Membranphysiologie,
Tel.: 0711/459-22273, E-Mail: Florian.P.M.Kohn@uni-hohenheim.de

Dr. Claudia Ulbrich, Universität Hohenheim, Fachgebiet Membranphysiologie,
Tel.: 0711/459 22273, E-Mail: claudia.ulbrich@uni-hohenheim.de

Florian Klebs | idw
Weitere Informationen:
http://www.uni-hohenheim.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pollen-Taxi für Bakterien
18.07.2018 | Technische Universität München

nachricht Biologische Signalprozesse in intelligenten Materialien
18.07.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics