Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In der Schwebe: Biologen untersuchen, warum Nervenzellen im All langsamer sind

08.04.2013
Versuchsreihen mit Flugzeug, Rakete und Raumkapsel / Forscher der Universität Hohenheim geben über Online-Tagebücher Einblicke in ihre Arbeit

Für Astronauten kann das schnell gefährlich werden: In der Schwerelosigkeit übertragen Nervenzellen Signale langsamer als auf der Erde. Bis heute ist nicht näher bekannt, weshalb. Mit aufwändigen Versuchsreihen in Flugzeugen, Raketen und Raumkapseln wollen Wissenschaftler der Universität Hohenheim dem Phänomen auf die Spur kommen.

Einblicke in ihre Forschung geben sie in Online-Tagebüchern auf: https://membranphysiologie.uni-hohenheim.de/69703. Das Bundesministerium für Wirtschaft und Technologie fördert das Forschungsprojekt mit über 350.000 Euro. Damit gehört es zu den Schwergewichten der Forschung an der Universität Hohenheim.

Die nächste Parabelflugkampagne des Deutschen Zentrums für Luft- und Raumfahrt (DLR) startet am 15. April 2013 in Bordeaux. Am 23. April steigt der Airbus A300 „Zero-G“ steil in den Himmel auf und erreicht in neun Kilometern Höhe seine maximale Flughöhe. An dieser Stelle leiten die Piloten umgehend den Sinkflug ein. Das Flugzeug stürzt 3.000 Meter in die Tiefe. An Bord herrscht 22 Sekunden lang Schwerelosigkeit. Dann steigt das Flugzeug erneut steil auf. So geht das fünfmal hintereinander.

Danach fliegt der Airbus bis zu zehn Minuten auf einer geraden Flugbahn. Nun haben die 40 Wissenschaftler an Bord – Biologen, Chemiker, Physiker und Mediziner – Zeit, ihre Experimente anzupassen und auf die nächsten fünf Parabeln vorzubereiten. Am Ende des Tages haben sie 31 geflogene Parabeln hinter sich – und genug Daten gesammelt für ihre Forschungsarbeit.

Dr. Florian Kohn, Mitarbeiter im Fachgebiet Membranphysiologie der Universität Hohenheim, ist einer der Wissenschaftler an Bord des Airbus. Er untersucht, wie Nervenzellen in der Schwerelosigkeit funktionieren: „Russische Kosmonauten waren früher oft monatelang im All“, sagt Dr. Kohn. „Es wurde unter anderem festgestellt, dass in der Schwerelosigkeit die Leitfähigkeit von Nerven, und damit die Reaktionsfähigkeit verlängert ist.“ Bis heute sei nicht restlos geklärt, weshalb.

Tumorzellen sterben in der Schwerelosigkeit verstärkt ab

„Klar ist bisher nur, dass die Signalübertragung in Zellen in der Schwerelosigkeit verändert ist“, erklärt Dr. Kohn. Als Teil der Ursache für die verlangsamte elektrische Aktivität in der Schwerelosigkeit, vermutet er die Beteiligung des sogenannten Zytoskeletts. Dessen Hauptfunktion bestehe darin, die Zelle zu stützen und ihre Form zu wahren. Darüber hinaus fungiere es als Verbindung zwischen Zellmembran und -kern.

„Offenbar reagiert das Zytoskelett einer Nervenzelle umgehend auf veränderte Schwereverhältnisse“, sagt Dr. Kohn. „Es passt sich an.“ Allerdings sei noch offen, wie und weshalb sich das auf die Signalübertragung auswirkt.

Dr. Claudia Ulbrich, ebenfalls Mitarbeiterin im Fachgebiet Membranphysiologie der Universität Hohenheim, hat bei Parabelflügen noch eine ganz andere Beobachtung gemacht: „Menschliche Tumorzellen sterben in der Schwerelosigkeit in erhöhter Zahl ab. Offenbar erkennen sie, dass sie krank sind und zerstören sich mittels Apoptose selbst.“ Auch dabei spielt das Zytoskelett vermutlich eine zentrale Rolle. Aber welche?

„Krebskranke zur Genesung ins Weltall zu schießen, sei aber nicht unbedingt eine gute Idee“, sagt die Tierärztin schmunzelnd. „Leider sterben auch gesunde Zellen in der Schwerelosigkeit vermehrt ab. Auch das Immunsystem ist negativ beeinflusst.“

Raumkapsel mit menschlichen Nervenzellen soll 2015 an die ISS andocken

Um solche Rätsel lösen zu können, sind 22 Sekunden Schwerelosigkeit im Parabelflug nicht genug. Deshalb soll Ende 2014 von der schwedischen Abschussbasis Esrange bei Kiruna eine unbemannte Rakete 250 Kilometer in die Erdatmosphäre aufsteigen, um dann minutenlang im freien Fall wieder auf die Erde zurückkehren.

„An Bord werden Zellkultur-Gefäße mit menschlichen Nervenzellen sein – und ein Mikroskop, das die Zellen während des Fluges filmt und hoch aufgelöste Fotos, sowie Videos zu uns auf die Erde sendet“, sagt Dr. Kohn. Gefahr für Anwohner bestehe bei dem Experiment nicht, versichert er. Ein Fallschirm bremst die Rakete so weit ab, dass sie weich landet, und die Proben unversehrt bleiben. Außerdem gebe es weit und breit keine Siedlungen.

Medikamente gegen verlangsamte Reaktionsfähigkeit

Noch höher hinaus soll es 2015 gehen: Dann, so hoffen die beiden Wissenschaftler von der Universität Hohenheim, soll eine Raumkapsel zur internationalen Raumstation ISS fliegen und dort andocken. Dr. Kohn und Dr. Ulbrich könnten dann zwei Wochen lang von der Erde aus beobachten, wie sich menschliche Nervenzellen in der Schwerelosigkeit verhalten und entwickeln.

Ob sich Zellen auch in der Schwerelosigkeit normal entwickeln, will Dr. Kohn herausfinden: „Es könnte ja sein, dass irgendwann in ferner Zukunft tatsächlich mal Kinder im Weltall geboren werden und aufwachsen“, sagt der Forscher.
Mit ihrer Forschung könnten sich Astronauten in Zukunft ohne verzögerte Reaktionsfähigkeit für längere Zeit im Weltall aufhalten: „Wenn bekannt ist, warum die Signalübertragung in Nervenzellen bei Schwerelosigkeit verzögert abläuft“, erklärt Dr. Kohn, „ist es grundsätzlich möglich, Medikamente dagegen zu entwickeln.“

Interessierte können die Flüge im Internet mitverfolgen. Dr. Ulbrich und Dr. Kohn werden zu den verschiedenen Kampagnen Online-Tagebücher führen, in denen die beiden Forscher ihre Eindrücke und Gedanken festhalten – und erste Ergebnisse vorstellen: https://membranphysiologie.uni-hohenheim.de/69703

Hintergrund: Forschungsprojekt

„Signalübertragung und -kaskaden in menschlichen Zellen unter variablen Schwerkraftbedingungen“ heißt das Forschungsprojekt von Dr. Kohn und Dr. Ulbrich. Die beiden Wissenschaftler von der Universität Hohenheim gehören zu den jüngsten Forschern, die beim DLR ein großes wissenschaftliches Projekt leiten. Es ist zum 1. Januar 2013 angelaufen und endet nach drei Jahren am 31. Dezember 2015. Das Bundesministerium für Wirtschaft und Technologie unterstützt das Forschungsprojekt mit über 350.000 Euro.

Hintergrund: Schwergewichte der Forschung

Rund 27 Millionen Euro an Drittmitteln akquirierten Wissenschaftler der Universität Hohenheim im vergangenen Jahr für Forschung und Lehre. In loser Folge präsentiert die Reihe „Schwergewichte der Forschung“ herausragende Forschungsprojekte mit einem Drittmittelvolumen von mindestens 250.000 Euro bei den Experimental- bzw. 125.000 Euro bei den Buchwissenschaften.

Kontakt für Medien:
Dr. Florian Kohn (Projektleiter), Universität Hohenheim, Fachgebiet Membranphysiologie,
Tel.: 0711/459-22273, E-Mail: Florian.P.M.Kohn@uni-hohenheim.de

Dr. Claudia Ulbrich, Universität Hohenheim, Fachgebiet Membranphysiologie,
Tel.: 0711/459 22273, E-Mail: claudia.ulbrich@uni-hohenheim.de

Florian Klebs | idw
Weitere Informationen:
http://www.uni-hohenheim.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nonstop-Transport von Frachten in Nanomaschinen
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Wie sich ein Kristall in Wasser löst
20.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics