Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rechts, links oder durch die Mitte?

12.05.2011
Das Gehirn plant alle Optionen bis ins Detail und ermöglicht uns damit gründliche Entscheidungen

Der Stürmer läuft sich frei, bekommt den Ball, schießt – und Tor, Tor, Tor! Was ist da passiert? Der anlaufende Stürmer musste sich entscheiden: Zielt er auf den Torwart in der Annahme, dass dieser in eine der Ecken springen wird, oder zielt er auf den leeren Raum links oder rechts neben ihm?

Die beiden Alternativen erfordern eine unterschiedliche Planung der Bewegung. Während der Torwart ein direktes, also physisch sichtbares Ziel darstellt, ist die Ecke ein indirektes Ziel, ein leerer Raum, der sich nur aus der Lage der ihn umgebenden Objekte und Personen ergibt. Wissenschaftler vom Deutschen Primatenzentrum (DPZ) und vom Bernstein Zentrum für Computational Neuroscience in Göttingen haben in ihrer jetzt veröffentlichten Studie entschlüsselt, wie die Nervenzellen im Gehirn von Rhesusaffen die Entscheidung für die eine oder andere Bewegung ermöglichen. Sie konnten zeigen, dass das Gehirn sich nicht nur auf abstrakte Entscheidungen verlässt, sondern die erforderlichen Bewegungen mit in die Kosten-Nutzen-Rechnung einfließen lässt (Neuron, 2011).

„Der Stürmer muss sich in einer unsicheren Wahlsituation – er weiß nicht, was der Torwart tun wird – für eines von zwei Zielen mit unterschiedlichem Charakter entscheiden. Wie dieser Entscheidungsprozess im Hirn gesteuert wird, wollten wir herausfinden“, so Christian Klaes, Erstautor der Studie. Sowohl der Torwart als auch die Ecke sind so genannte motorische Ziele, also Ziele, die wir durch eine Bewegung von Armen oder Beinen erreichen wollen. Es ist seit längerem bekannt, dass die Planung zielgerichteter Bewegungen von zwei Großhirnregionen gesteuert wird: von der parietalen Armbewegungsregion und der dorsalen prämotorischen Rinde.

Die Göttinger Neurowissenschaftler wollten feststellen, was in den für die Bewegungsplanung zuständigen Gehirnregionen passiert, wenn erst noch überlegt werden muss, welche der Bewegungen ausgeführt werden soll. Die Entscheidung könnte auf der Ebene der Informationsverabeitung getroffen werden, auf der die verschiedenen Regeln kodiert werden, nach denen das Bewegungsziel gewählt werden kann. In dem Fall würden die räumlichen Regeln „direkt“ (also auf den Torwart) und „indirekt“ (in die Ecke) gegeneinander abgewogen werden. Trifft dies zu, so sollten in den Planungsarealen des Gehirns nur die Nervenzellen aktiv sein, welche die Bewegung auf das Ziel planen, das der ausgewählten Regel entspricht. Alternativ könnte die Entscheidung auf der Ebene erfolgen, auf der die konkurrierenden motorischen Ziele gespeichert sind, die mit den beiden Regeln (direkt und indirekt) verknüpft sind. In diesem Fall würde der Bewegungsplan für den Geradeausschuss gegen den Bewegungsplan für den Eckschuss abgewogen. Dementsprechend sollten die beiden alternativen Bewegungspläne gleichzeitig nebeneinander im Gehirn existieren und miteinander konkurrieren.

Die Wissenschaftler um Alexander Gail haben Rhesusaffen darauf trainiert, entweder ein direktes Ziel in Form eines Punktes auf einem Monitor, in unserem Beispiel also den Torwart, oder ein indirektes Ziel, wie die leere Ecke, zu berühren. Der Versuchsaufbau sah so aus, dass der Rhesusaffe für kurze Zeit einen visuellen Reiz in Form eines Punktes gezeigt bekam, der sich entweder auf der linken oder rechten Seite des Monitors befand. Nach einer kurzen Merkphase erschien manchmal ein grünes oder ein blaues Viereck. Erschien das grüne Viereck, so musste der Punkt direkt berührt werden, erschien das blaue Viereck, so sollte die dem Punkt gegenüberliegende Seite berührt werden. Erhielt der Affe keinen grünen oder blauen Hinweisreiz, so konnte er selbst entscheiden, welche Monitorseite er berühren wollte. Gleichzeitig wurde die Aktivität der Nervenzellen im sensomotorischen Bereich des Gehirns mit Mikroelektroden gemessen. Diese Methode erlaubt es, die elektrische Aktivtät der Nervenzellen höchst präzise und zeitlich genau zu erfassen, was eine Voraussetzung ist, um die sehr selektiven und dynamischen Entscheidungsvorgänge untersuchen zu können. Bemerkenswerterweise zeigte sich dabei, dass sowohl die Neurone für die direkten als auch für die indirekten räumlichen Ziele aktiv waren.

„Unsere Ergebnisse zeigen, dass das Gehirn die alternativen Bewegungen, also sowohl den Schuss in die Mitte als auch den in die Ecke, parallel plant, bevor die letztendliche Entscheidung fällt“, so Klaes. Gail sieht eine deutliche Parallele zu Entscheidungen für verschiedene physische Ziele, wie beispielsweise die Mitspieler der Mannschaft. „Das sensomotorische System scheint bei regelbasierten Entscheidungen zunächst alle möglichen Bewegungsziele abzubilden, um dann dieselben Verarbeitungsmechanismen zu nutzen, die auch bei der Wahl zwischen verschiedenen physischen Zielen zum Einsatz kommen“, so Gail. Die Wissenschaftler konnten außerdem zeigen, dass gleichzeitig vorhandene Bewegungsziele miteinander konkurrieren und dass sie von bestimmten Vorlieben der Affen beeinflusst werden. Letztere wurden durch Gabe von Belohnungen bei den Tieren hervorgerufen.

Primaten fällen ihre Entscheidungen für bestimmte Verhaltensweisen also nicht nur durch ein Abwägen von abstrakten Regeln, sondern beziehen auch die Bewegungsziele mit ein, die mit den verschiedenen Regeln verbunden sind. Den Entscheidungsprozess auf verschiedene Verarbeitungsschritte im Gehirn zu verteilen hat den Vorteil, dass eine umfassendere Kosten-Nutzen-Rechnung möglich ist. „Unserem Torschützen reicht es nicht zu wissen, dass der Torwart meistens nach links springt, er muss auch bedenken, dass ihm die Schüsse auf die gegenüberliegende Seite oft nicht gut gelingen. Er muss also beide Faktoren abwägen, um erfolgreich zu sein“, so Alexander Gail. „Unsere Damennationalmannschaft scheint diese Zusammenhänge intuitiv zu verstehen – zumindest lässt ihr Erfolg dies vermuten“, so Gail in Hinblick auf die kommende Fußballweltmeisterschaft.

Originalpublikation
"Choosing Goals, Not Rules: Deciding among Rule-Based Action Plans", Christian Klaes, Stephanie Westendorff, Shubhodeep Chakrabarti, Alexander Gail, Neuron, 2011, doi:10.1016/j.neuron.2011.02.053
Kontakt
Dr. Alexander Gail
Tel: 0551 3851-358
E-Mail: agail@gwdg.de
Dr. Susanne Diederich (Presse- und Öffentlichkeitsarbeit)
Tel: 0551 3851-359
E-Mail: sdiederich@dpz.eu
Die Deutsches Primatenzentrum GmbH (DPZ) / Leibniz-Institut für Primatenforschung in Göttingen betreibt Grundlagenforschung an und mit Primaten auf den Gebieten der organismischen Biologie, der Infektionsforschung und der Neurowissenschaften. Sie unterhält außerdem fünf Freilandstationen im Ausland und ist Kompetenz- und Referenzzentrum für alle Belange der Primatenforschung. Das DPZ ist eine der 87 Forschungs- und Infrastruktureinrichtungen der Leibniz-Gemeinschaft (http://www.wgl.de/).

Das Bernstein-Zentrum Berlin ist Teil des nationalen Bernstein Netzwerks Computational Neuroscience (NNCN). Das NNCN wurde vom BMBF mit dem Ziel gegründet, die Kapazitäten im Bereich der neuen Forschungsdisziplin Computational Neuroscience zu bündeln, zu vernetzen und weiterzuentwickeln. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Dr. Susanne Diederich | idw
Weitere Informationen:
http://www.dpz.eu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Krebszellen Winterschlaf halten
16.07.2018 | Universitätsklinikum Carl Gustav Carus Dresden

nachricht Feinstaub macht Bäume anfälliger gegen Trockenheit
16.07.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vertikales Begrünungssystem Biolit Vertical Green<sup>®</sup> auf Landesgartenschau Würzburg

16.07.2018 | Architektur Bauwesen

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics