Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel des Kristallwachstums

31.07.2015

Neue Forschungsergebnisse zeigen natürliche, nicht-klassische Varianten des Kristallwachstums

Kristallwachstum gibt der Wissenschaft noch immer Rätsel auf. Seit Jahrzehnten stellt sich Forschern die Frage, wie Mineralien bei Tieren und Pflanzen unregelmäßige Strukturen annehmen können, die in keinerlei Verhältnis zur ursprünglich symmetrischen Struktur des Kristalls stehen.

Ein internationaler Verbund von Wissenschaftlern unter Beteiligung der Universität Konstanz konnte nun auf Nano-Ebene nachweisen, dass die Natur eine Vielzahl an Varianten des Kristallwachstums abseits der klassischen Methode „ein-Atom-nach-dem-anderen“ kennt.

Die Forschungsergebnisse könnten weitreichende Auswirkungen für grundlegende Fragen zum Kristallwachstum haben. Die Forschungsergebnisse sind im renommierten Wissenschaftsjournal Science in der Ausgabe vom 31. Juli 2015 veröffentlicht.

Kristallwachstum spielt eine bedeutende Rolle für eine Vielzahl an Materialien und Anwendungen in allen Bereichen, vom biologischen Skelett und Muschelschalen über geologische Bodenschichten bis hin zur Halbleiter-Technologie. Über mehrere Fachrichtungen hinweg haben Wissenschaftler Phänomene des Kristallwachstums beobachtet – zum Beispiel anhand des Skeletts von Tieren oder in Laborexperimenten –, die sich nicht durch klassische Theorien erklären lassen.

Die aktuelle Forschungsarbeit zeigt nun, dass Kristalle in komplexen und unerwarteten Strukturen aufgebaut werden können, indem Nanoteilchen – wie zum Beispiel Nanokristalle, -cluster oder -tröpfchen – angefügt werden. Der Prozess setzt bei der Ausformung dieser Teilchen ein.

All diese Teilchen sind instabil und verbinden sich miteinander sowie mit nahegelegenen Kristallen und anderen Oberflächen. Diese Teilchenverbindungen können Strukturen annehmen, die den klassischen, facettierten Strukturen von Kristallen gleichen – sie können aber auch gänzlich unerwartete Anordnungen und ungewöhnliche Strukturen bilden.

Beispielsweise tendieren Nanokristalle dazu, sich in gleichmäßiger Anordnung nach dem größeren Kristall auszurichten, bevor sie sich mit ihm verbinden. Andererseits können jedoch auch unregelmäßige, amorphe Teilchenaufschichtungen entstehen, die sich schlicht aufhäufen und sich später in ihrer Masse zu einem einheitlichen Kristall formen.

Insgesamt 15 internationale Arbeitsgruppen aus den Gebieten der Chemie und Geochemie, Physik, Biologie sowie den Geowissenschaften und Materialwissenschaften haben zusammengearbeitet, um die an diesem Prozess beteiligten Nanoteilchen zu identifizieren und die chemischen Zusammenhänge zu verstehen.

Die beteiligten Wissenschaftlerinnen und Wissenschaftler führten hierfür Laborexperimente durch, untersuchten Tierskelette, erforschten Erdschichten sowie Ablagerungen in Gewässern. In Computersimulationen visualisierten sie, wie diese Teilchen verknüpft werden können und welche Strukturen sie ausbilden können.

An der Universität Konstanz wurden in diesem Rahmen die sogenannten Mesokristalle erforscht. Diese entstehen, wenn sich Nanokristalle kontrolliert zueinander ausrichten, aber noch nicht zu einem einzigen Kristall zusammenwachsen, sondern durch weiche Schichten voneinander getrennt bleiben. Solche Mesokristalle wurden von der Konstanzer Arbeitsgruppe zum Beispiel in Seeigelstacheln identifiziert, wo sie dem Stachel durch ihre „Backsteinmauer-Architektur“ Bruchfestigkeit verleihen.

Dieser Aufbau konnte inzwischen erfolgreich auf Zement übertragen werden, was in bruchfestem Zement resultierte. „Es ergeben sich durch diesen Kristallisationsweg völlig neue und faszinierende Perspektiven für die Herstellung zukünftiger kristalliner Materialien“, erklärt Prof. Dr. Helmut Cölfen, Professor für physikalische Chemie an der Universität Konstanz. Cölfen arbeitet schon seit mehr als zehn Jahren an nichtklassischen Kristallisationsphänomenen. Bereits 2008 hat er zu dieser Thematik sein vielbeachtetes Buch „Mesocrystals and Nonclassical Crystallization“ veröffentlicht.

Die aktuellen Forschungsergebnisse erklären nun ungewöhnliche Mineralstrukturen in Gesteinsschichten und geben Aufschluss darüber, wie Kristalle im Tierreich zu Muschelschalen, Zähnen und Knochen ausgeformt werden. Darüber hinaus erschließt sich ein neues Bild, wie in Gewässern Schadstoffe in Mineralien eingeschlossen sein können, wie sie transportiert werden sowie in Sedimenten und im Boden abgelagert werden. Dieses Wissen könnte eine wichtige Rolle in der Wasser- und Bodenaufbereitung spielen. Nicht zuletzt eröffnen die Forschungsergebnisse neue Ansätze für die Entwicklung von künftigen High-Tech-Materialien wie beispielsweise bruchfestem Zement.

Originalpublikation:
J. De Yoreo, P. U. P. A. Gilbert, N. A. J. M. Sommerdijk, R. L. Penn, S. Whitelam, D. Joester, H. Z. Zhang, J. D. Rimer, A. Navrotsky, J. F. Banfield, A. F. Wallace, F. M. Michel, F. C. Meldrum, H. Cölfen, P. M. Dove, Toward a Comprehensive Picture of Crystallization by Particle Attachment. Science 2015, 31.7.2015.

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 88-3603
E-Mail: kum@uni-konstanz.de

Prof. Dr. Helmut Cölfen
Universität Konstanz
Fachbereich Chemie
Universitätsstraße 10
78464 Konstanz
Telefon: 07531 88-4063
E-Mail: Helmut.Coelfen@uni-konstanz.de

Weitere Informationen:

http://www.uni.kn

Julia Wandt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Blut dank neuer Technik
14.12.2018 | Medizinische Hochschule Hannover

nachricht Neue Chancen für den Tierschutz: Effizientes Testverfahren zum Betäubungsmittel-Einsatz bei Fischen
14.12.2018 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: Quantenkryptographie ist bereit für das Netz

Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.

Alice und Bob bekommen Gesellschaft: Bisher fand quantenkryptographisch verschlüsselte Kommunikation primär zwischen zwei aktiven Teilnehmern, zumeist Alice...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Außergewöhnliche Notoperation der Gefäßchirurgie am LMU-Klinikum München

17.12.2018 | Medizintechnik

Träge Miniroboter fliegen aus der Kurve

17.12.2018 | Physik Astronomie

Datenspeicherung mit einzelnen Molekülen

17.12.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics