Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein mit vielen Aufgaben

10.10.2016

Freiburger Forscher zeigen, wie eine molekulare Fassstruktur unterschiedliche Funktionen in Mitochondrien ausübt

Freiburger Forscherinnen und Forscher haben entdeckt, dass das molekulare Fassprotein Mdm10 durch Anbindung an Proteinmaschinen unterschiedliche Funktionen für die Entstehung und Aufrechterhaltung der Struktur von Mitochondrien ausführen kann. Diese produzieren als Kraftwerke der Zellen beispielsweise die Energie für deren Stoffwechsel.


Das Protein Mdm10 spielt am SAM-Komplex eine Rolle im Proteintransport und ist der mitochondriale Membrananker des ERMES-Komplexes, der eine molekulare Brücke zwischen dem ER und den Mitochondrien ausbildet. Grafik: Arbeitsgruppe Becker/Universität Freiburg

Das Team um Prof. Dr. Nikolaus Pfanner und Privatdozent Dr. Thomas Becker vom Institut für Biochemie und Molekularbiologie der Universität Freiburg hat gemeinsam mit weiteren Kolleginnen und Kollegen die Ergebnisse in der Fachzeitschrift „Nature Communications“ veröffentlicht.

Mitochondrien sind einerseits auf den Import von Proteinen aus dem Cytosol, der Zellflüssigkeit, angewiesen. Zum anderen sind sie abhängig vom Austausch fettähnlicher Lipide, die das Grundgerüst biologischer Membrane bilden, mit dem Endoplasmatischen Reticulum (ER), einer netzartigen Membranstruktur im Cytosol.

Proteinmaschinen in der äußeren Membran der Mitochondrien spielen hierbei eine zentrale Rolle: Der TOM-Komplex bildet die Eintrittspforte für die Proteine aus dem Cytosol in die Mitochondrien. Eine zweite Proteinmaschine, der SAM-Komplex, baut Proteine in die Außenmembran ein. Mitochondrien sind über molekulare Brücken mit dem ER verbunden, was den Lipidaustausch erleichtert und die Ausbildung der mitochondrialen Struktur ermöglicht. Eine solche Kontaktstelle bildet der so genannte ERMES-Komplex.

Das Protein Mdm10, das eine beta-Fassstruktur ausbildet, bindet an den SAM-Komplex und ist auch Bestandteil des ERMES-Komplexes. Das Außenmembranprotein Tom7 reguliert die Verteilung von Mdm10 zwischen den Proteinkomplexen. Die Funktionen von Mdm10 an diesen zwei Proteinmaschinen waren bislang wenig bekannt.

Freiburger Wissenschaftlerinnen und Wissenschaftler des Sonderforschungsbereichs 746 „Funktionelle Spezifität durch Kopplung und Modifikation von Proteinen“ und des Exzellenzclusters BIOSS Center for Biological Signalling Studies haben in Zusammenarbeit mit der Arbeitsgruppe von Prof. Dr. Enrico Schleiff von der Universität Frankfurt nachgewiesen, dass die Bindestellen für den SAM- und ERMES-Komplex auf unterschiedlichen Seiten der beta-Fassstruktur von Mdm10 liegen.

Dem Doktoranden Lars Ellenrieder aus Beckers Arbeitsgruppe ist es außerdem gelungen, die jeweiligen Funktionen von Mdm10 am SAM- und ERMES-Komplex zu identifizieren. Das Protein bildet den mitochondrialen Membrananker für den ERMES-Komplex und ist daher unerlässlich für die Aufrechterhaltung der Lipidzusammensetzung und der Struktur der Mitochondrien. In Zusammenarbeit mit der Gruppe von Prof. Dr. Richard Wagner von der Jacobs University Bremen haben die Forscher zudem nachgewiesen, dass Mdm10 einen Kanal formt und am SAM-Komplex am Import von Proteinen in die Außenmembran beteiligt ist.

Originalveröffentlichung:
Ellenrieder et al. (2016) Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10. Nature Communications. DOI: 10.1038/NCOMMS13021

Kontakt:
Privatdozent Dr. Thomas Becker
Institut für Biochemie und Molekularbiologie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-5243
E-Mail: thomas.becker@biochemie.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2016/pm.2016-10-10.140

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Weg entdeckt, um Killerzellen «umzuprogrammieren»
19.11.2019 | Universität Bern

nachricht Tiefseebakterien ernähren sich wie ihre Nachbarn
19.11.2019 | Max-Planck-Institut für Marine Mikrobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Im Focus: Der direkte Weg zur Phosphorverbindung: Regensburger Chemiker entwickeln Katalysemethode

Wissenschaftler finden effizientere und umweltfreundlichere Methode, um Produkte ohne Zwischenstufen aus weißem Phosphor herzustellen.

Pflanzenschutzmittel, Dünger, Extraktions- oder Schmiermittel – Phosphorverbindungen sind aus vielen Mitteln für den Alltag und die Industrie nicht...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Neu entwickeltes Glas ist biegsam

Eine internationale Forschungsgruppe mit Beteiligung der Österreichischen Akademie der Wissenschaften hat ein Glasmaterial entwickelt, das sich bei Raumtemperatur bruchfrei verformen lässt. Das berichtet das Team aktuell in "Science". Das extrem harte und zugleich leichte Material verspricht ein großes Anwendungspotential – von Smartphone-Displays bis hin zum Maschinenbau.

Gläser sind ein wesentlicher Bestandteil der modernen Welt. Dabei handelt es sich im Alltag meist um sauerstoffhaltige Gläser, wie sie etwa für Fenster und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Weg entdeckt, um Killerzellen «umzuprogrammieren»

19.11.2019 | Biowissenschaften Chemie

Supereffiziente Flügel heben ab

19.11.2019 | Materialwissenschaften

Energiesysteme neu denken - Lastmanagement mit Blockheizkraftwerk

19.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics