Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Präzise Signalweitergabe im Gehirn

09.06.2010
Wissenschaftler der Universität Freiburg untersuchen, warum das Gehirn Signale produziert, die die Aktivität von Nervenzellen unterdrückt, nachdem sie gerade angeregt wurden

Bei jeder Sinneswahrnehmung verarbeitet das Gehirn die aufgenommenen Informationen Schritt für Schritt in aufeinander folgenden Ebenen. Neurone in jeder Ebene geben Signale in Form von elektrischen Impulsen an die nächste Ebene weiter.

Dabei gibt es zwei Sorten von Signalen: solche, die die Aktivität der nachgeschalteten Zelle aktivieren, so genannte erregende Signale, und solche, die ihre Aktivität hemmen – inhibierende Signale. Das mag zunächst widersprüchlich erscheinen: Warum sollte das Gehirn Energie aufwenden, um seine eigene Aktivität zu unterdrücken? Dr. Jens Kremkow und Prof. Dr. Ad Aertsen vom Bernstein Center for Computational Neuroscience und Institut für Biologie III der Universität Freiburg haben nun – gemeinsam mit Kollegen aus Marseille – im Computermodell die Rolle inhibierender Verschaltungen bei der Weiterleitung von Informationen im Gehirn untersucht. Sie zeigen, dass sie für eine präzise Signalweitergabe sehr von Vorteil sind.

Eine Nervenzelle erhält von der gleichen vorgeschalteten Struktur oftmals sowohl erregende als auch inhibierende Signale, wobei das hemmende Signal wenige Millisekunden nach dem erregenden Signal eintrifft. Dem liegt eine bestimmte Verschaltungsstruktur zugrunde, die so genannte „Feed Forward Inhibition" (FFI). In ihrer Studie haben die Wissenschaftler untersucht, welchen Einfluss FFI auf die Signalweitergabe im Gehirn hat – zum einen auf der Ebene einzelner Zellen, zum anderen für komplexere Netzwerke.

Bei einzelnen Nervenzellen führt FFI dazu, dass die Zellen wie ein Filter für gleichzeitige Signale funktionieren. Das lässt sich recht einfach und ganz ohne Computersimulation erklären. Jede Nervenzelle bekommt Signale von Tausenden von vorgeschalteten Zellen und „summiert" diese Eingangssignale. Erst wenn ein bestimmter Schwellenwert erreicht wird, sendet die Zelle selbst ein Signal – sie „feuert". Folgt jedem erregenden Signal ein inhibierendes Signal, wird dieser Schwellenwert nur schwer erreicht. Jedes „Plus", das die Zelle zählt, wird sehr bald durch ein „Minus" aufgehoben. Nur wenn sehr viele erregende Signale gleichzeitig eintreffen, so dass der Schwellenwert erreicht wird, bevor die inhibierenden Signale nachfolgen, hat die Zelle eine Chance, zu feuern. Für die Weitergabe von Informationen im Gehirn kann ein solcher Filter für Gleichzeitigkeit von Bedeutung sein, denn Sinneswahrnehmungen führen oft zu synchroner – also gleichzeitiger Aktivität von Nervenzellen im Gehirn. Diese werden dann bevorzugt weitergeleitet.

Im Nervensystem werden Signale über Gruppen von Nervenzellen von Verarbeitungsstufe zu Verarbeitungsstufe weitergereicht. In Computersimulationen untersuchten die Freiburger Wissenschaftler, wie FFI die Signalweitergabe in einer solchen Struktur beeinflusst. Auch hier, so zeigten sie, führt FFI zu einer Selektion von synchronen Signalen – asynchrone Signale werden herausgefiltert. Wie synchron das Signal sein muss, damit es transportiert wird, hängt von der Stärke des inhibierenden Signals und von der Verzögerungszeit zwischen erregendem und inhibierendem Signal ab. Somit kann im Nervensystem über diese Faktoren die Weiterleitung von Signalen feinreguliert werden. Zusätzlich zeigten die Forscher, dass die Hintergrundaktivität des Netzwerks, in das die neuronale Struktur zur Signalweitergabe eingebettet ist, durch inhibierende Signale in einem Zustand gehalten wird, der die Signalweitergabe fördert. Insgesamt trägt Inhibition in Form von FFI also dazu bei, dass synchrone Signale effektiv und selektiv im Gehirn transportiert werden.

Originalpublikation: Jens Kremkow, Laurent U. Perrinet, Guillaume S. Masson and Ad Aertsen. Functional consequences of correlated excitatory and inhibitory conductances in cortical networks. Journal of Computational Neuroscience, Online 19. Mai 2010

DOI: 10.1007/s10827-010-0240-9

Kontaktinformation:
Dr. Jens Kremkow, Prof. Dr. Ad Aertsen
Institut für Biologie III, Albert-Ludwigs-Universität Freiburg
e-mail: kremkow@biologie.uni-freiburg.de / ad.aertsen@biologie.uni-freiburg.de
Tel: +49(0) 761 203 2861

Dr. Katrin Weigmann | idw
Weitere Informationen:
http://www.nncn.de
http://www.bccn.uni-freiburg.de/
http://www.uni-freiburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Türsteher im Gehirn
06.08.2020 | Institute of Science and Technology Austria

nachricht Peptide: Forschungs-Erfolg mit den kleinen Geschwistern der Proteine
06.08.2020 | Hochschule Coburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

Eine entscheidende Ergänzung zum Stanzen von Kontakten erarbeiteten Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT. Die Aachener haben im Rahmen des EFRE-Forschungsprojekts ScanCut zusammen mit Industriepartnern aus Nordrhein-Westfalen ein hybrides Fertigungsverfahren zum Laserschneiden von dünnwandigen Metallbändern entwickelt, wodurch auch winzige Details von Kontaktteilen umweltfreundlich, hochpräzise und effizient gefertigt werden können.

Sie sind unscheinbar und winzig, trotzdem steht und fällt der Einsatz eines modernen Fahrzeugs mit ihnen: Die Rede ist von mehreren Tausend Steckverbindern im...

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationstage 2020 – digital

06.08.2020 | Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Türsteher im Gehirn

06.08.2020 | Biowissenschaften Chemie

Kognitive Energiesysteme: Neues Kompetenzzentrum sucht Partner aus Wissenschaft und Wirtschaft

06.08.2020 | Energie und Elektrotechnik

Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

06.08.2020 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics