Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzenwurzeln im Dunkeln sehen Licht

03.11.2016

Forschern und Forscherinnen des Max-Planck-Instituts für chemische Ökologie in Jena und der Nationalen Universität Seoul in Korea konnten erstmalig zeigen, dass Wurzeln der Ackerschmalwand direkt auf Licht reagieren, das vom Spross in die unterirdischen Pflanzenteile übertragen wird. Wurzeln können so das Pflanzenwachstum an die Lichtbedingungen der Umgebung anpassen (Science Signaling, November 2016, DOI: 10.1126/scisignal.aaf6530).

Licht ist nicht nur eine Energiequelle, sondern auch ein wichtiges Signal, das viele lichtabhängige Wachstumsvorgänge in der Pflanze steuert, um sie optimal an ihre Umwelt anzupassen. Licht wird zunächst im Spross der Pflanze von Lichtrezeptoren erkannt.


Lichtrezeptoren in den Wurzeln werden von Licht aktiviert, das vom Spross über den Stängel in die unterirdischen Wurzeln übertragen wird.

Rakesh Santhanam, Angela Overmeyer / Max-Planck-Institut für chemische Ökologie.

Über Lichtsignalmoleküle werden physiologische Prozesse in der Pflanze reguliert. Schon seit mehr als drei Jahrzehnten wurde darüber spekuliert, ob auch Wurzeln Licht wahrnehmen können. Diese Hypothese konnte aber bis zu dieser neuen Studie nicht belegt werden.

„Physiker aus Korea und Biologen aus Jena haben jetzt das Wissen aus beiden Bereichen kombiniert , um zu untersuchen, ob die Leitgefäße im Spross wie eine Art Faser Licht vom Spross in die Wurzel leiten“, beschreibt Sang-Gyu Kim, einer der Erstautoren der Studie und Mitinitiator des Projekts, die erfolgreiche Kooperation.

Frühere Studien hatten gezeigt, dass ein bestimmter pflanzlicher Lichtrezeptor, der Licht der Wellenlängen rot/infrarot wahrnimmt, erstaunlicherweise auch in den Wurzeln vorkommt. Unklar war allerdings, wie er dort aktiviert wird. In ihrem interdisziplinären Projekt entwickelten nun Molekularbiologen und Spezialisten für angewandte Optik einen hochsensitiven Lichtdetektor sowie die Idee, „blinde“ und „sehende“ Wurzeln zu kreieren.

Die Forscher verwendeten Pflanzen der Ackerschmalwand (Arabidopsis thaliana), einer Modellpflanze in der botanischen Forschung, die genetisch so verändert waren, dass der Lichtrezeptor nur in den Wurzeln außer Kraft gesetzt wurde, nicht aber im Spross. Diese Pflanzen waren also in der Wurzel „blind“. Für die Untersuchungen wuchsen diese Versuchspflanzen zusammen mit Kontrollpflanzen wie in der Natur: mit den Wurzeln im Dunkeln und dem Spross im Licht.

Das optische Detektorsystem wurde eingesetzt, um das Licht zu messen, dass im Stamm hinunter in die Wurzeln übertragen wurde. „Mit diesem Ansatz konnten wir eindeutig zeigen, dass Licht durch die Leitbündel in die Wurzel geleitet wird. Auch wenn die gemessene Intensität sehr gering war, war sie ausreichend, um die Lichtrezeptoren zu aktivieren, eine Lichtsignalkette auszulösen und das Wachstum in den Kontrollpflanzen zu beeinflussen“, erläutert Chung-Mo Park, Leiter des Projekts an der Nationalen Universität in Seoul.

„Diese Ergebnisse sind entscheidend für die weitere Forschung. Unsere Arbeit belegt, dass Wurzeln auch im Boden Licht wahrnehmen können. Dies wiederum aktiviert eine Signalkette, die das Pflanzenwachstum, insbesondere die Wurzelarchitektur, beeinflusst“, sagt Ian Baldwin, Studienleiter am Max-Planck-Institut für chemische Ökologie in Jena. Er blickt bereits in die Zukunft. „In den Wurzeln gibt es noch weitere Lichtrezeptoren. Deren Aufgabe in den Wurzeln und ihr Zusammenspiel mit Lichtsignalen, die aus dem Spross in die Wurzel geleitet werden, ist noch weitgehend unbekannt.“

Von großer Bedeutung für die ökologische Forschung ist es nun, zu zeigen, welche Bedeutung das Ergebnis dieser Studie für Pflanzen hat, die in ihrer natürlichen Umgebung wachsen. Dazu wollen die Forscher Untersuchungen an einer anderen Pflanzenart durchführen, dem Kojotentabak Nicotiana attenuata, einer Modellpflanze der Ökologie, die an extrem starke Lichtverhältnisse angepasst ist. Die Forscher vermuten, dass die neu entdeckte Fähigkeit von Pflanzenwurzeln, Licht wahrzunehmen, entscheidend zur Überlebensfähigkeit von Pflanzen in der Natur beiträgt, indem Energieressourcen für Wachstum, Fortpflanzung und Verteidigung effektiver zugeteilt werden können. [KG/AO]

Originalveröffentlichung:
Lee, H.-J., Ha, J.-H., Kim, S.-G., Choi, H.-K., Kim, Z. H., Han, Y.-J., Kim, J.-I., Oh, Y., Fragoso, V., Shin, K., Hyeon, T., Choi, H.-G., Oh, K.-H., Baldwin, I. T., Park, C.-M. (2016). Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Science Signaling. Vol. 9, Issue 452, pp. ra106
http://dx.doi.org/10.1126/scisignal.aaf6530

Weitere Informationen:
Prof. Ian T. Baldwin, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1101, E-Mail baldwin@ice.mpg.de
Prof. Chung-Mo Park, Department of Chemistry, Seoul National University, Seoul, Korea 08826, +82 2 880-6640, E-Mail cmpark@snu.ac.kr

Kontakt und Bildanfragen:
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/downloads2016.html

Weitere Informationen:

http://www.ice.mpg.de/ext/index.php?id=molecular-ecology Abteilung Molekulare Ökologie

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?
03.07.2020 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Wirkstoffe aus Kieler Meeresalgen als Mittel gegen Infektionen und Hautkrebs entdeckt
03.07.2020 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

03.07.2020 | Biowissenschaften Chemie

Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern

03.07.2020 | Energie und Elektrotechnik

Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

03.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics