Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer bakterieller Abwehrmechanismus von CRISPR-Cas-Systemen entdeckt

18.07.2017

Forschende unter der Leitung von UZH-Professor Martin Jinek haben einen neuen Abwehrmechanismus entdeckt, mit dem sich Bakterien gegen eindringende Viren verteidigen. Wird ihr Immunsystem sehr stark beansprucht, produziert das CRISPR-Cas-System ein chemisches Signal, das ein weiteres Enzym aktiviert. Dieses hilft, das genetische Material des Angreifers zu zerstören – sehr ähnlich wie das angeborene Immunsystem des Menschen Viren bekämpft.

CRISPR-Cas ist ein Immunsystem, über das zahlreiche Bakterienarten verfügen. Es schützt die Einzeller gegenüber Viren und molekularen Parasiten und verhindert, dass die Eindringlinge die Kontrolle über das bakterielle Genom übernehmen. Verantwortlich für die Immunabwehr ist eine komplexe molekulare Multi-Protein-Maschinerie, die mit Hilfe von RNA-Molekülen den Angreifer erkennt und gezielt abwehrt.


Wenn ein Virus eine Bakterienzelle infiziert, führt das CRISPR-Cas-System zu einer Abwehrreaktion.

Bild: arinarici / iStock

Quelle: Universität Zürich

Bekannt ist, dass der Proteinkomplex über eine eigene Nuklease-Aktivität verfügt, d.h. er kann DNA oder RNA von Viren direkt abbauen. Nun hat ein von UZH-Professor Martin Jinek geleitetes, internationales Forschungsteam einen völlig neuen bakteriellen Abwehrmechanismus entdeckt.

Signalmolekül aktiviert zusätzliches antivirales Enzym

Die Zielerkennung von CRISPR-Cas-Systemen funktioniert mit Hilfe von RNA-Molekülen, die von Abschnitten sich wiederholender DNA-Sequenzen im Erbgut von Bakterien abstammen (engl. clustered regularly interspaced short palindromic repeats, CRISPR) sowie den CRISPR-assoziierten Proteinen (Cas). Während das Genmaterial von Eindringlingen mittels der CRISPR-RNA identifiziert wird, zerschneiden die Cas-Eiweisse die Virus-DNA wie molekulare Scheren.

In einem bestimmten CRISPR-Cas-System (bekannt als Typ III) machten die Forschenden eine überraschende Entdeckung. Sobald die Maschinerie das Virus erkennt, produziert es einen bislang unbekannten Botenstoff: ein kleines, zirkuläres RNA-Molekül. Dieses Signalmolekül verteilt sich in der Bakterienzelle und aktiviert ein weiteres RNA-abbauendes Enzym namens Csm6, das die Virusabwehr unterstützt.

Ähnlicher Mechanismus wie im menschlichen Immunsystem

«Wird das CRISPR-Cas-System in der infizierten Bakterienzelle sehr stark gefordert, löst es mit diesem Signal Alarm aus», erklärt Jinek. «Damit wird ein weiterer Abwehrmechanismus zu Hilfe gerufen, um das Virus zu eliminieren.» Dieses bakterielle Verteidigungssystem war bis anhin nicht bekannt. Auch wurde der vom CRISPR-Cas-System produzierte sekundäre Botenstoff bisher noch nie in der Natur beobachtet.

Zudem hat der neu entdeckte Abwehrmechanismus unerwartete Ähnlichkeiten mit der Virusabwehr, wie sie vom angeborenen menschlichen Immunsystems bekannt ist. «Bakterien bekämpfen Viren auf eine Art, die jener von menschlichen Zellen überraschend ähnlich ist», ergänzt Jinek.

Literatur:
Ole Niewoehner, Carmela Garcia-Doval, Jakob T. Rostøl, Christian Berk, Frank Schwede, Laurent Bigler, Jonathan Hall, Luciano A. Marraffini, and Martin Jinek. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature. 17 July 2017. DOI: 10.1038/nature23467

Kontakt:
Prof. Dr. Martin Jinek
Biochemisches Institut
Universität Zürich
Tel. +41 44 635 55 72
E-Mail: jinek@bioc.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/de/medienmitteilungen/2017/Neuer-CRISPR-Cas-Abwehrmechan...

Kurt Bodenmüller | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics