Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Mikroskopie-Technologie offenbart Struktur und Funktion eines zentralen Stoffwechselenzyms

29.08.2019

Strukturbiologen enthüllen atomare Struktur und Regulationsmechanismus des Stoffwechselenzyms Transhydrogenase – Erste Veröffentlichung von Daten auf Basis eines neuen Kryo-Elektronenmikroskops am IST Austria

Das Enzym Transhydrogenase spielt eine wesentliche Rolle in der Regulierung metabolischer Prozesse bei Menschen und Tieren. Fehlfunktionen des Enzyms können schwerwiegende Krankheiten nach sich ziehen.


3D-Print des Enzyms Transhydrogenase.

IST Austria – Domen Kampjut/Sazanov group

Mithilfe eines top-modernen Kryo-Elektronenmikroskops am Institute of Science and Technology Austria (IST Austria) gelang es Strukturbiologen erstmalig, die atomare Struktur des Enzyms abzubilden und seine Arbeitsweise zu analysieren.

Die Ergebnisse wurden im Fachmagazin Nature veröffentlicht und sind von großer Relevanz für die Entwicklung derzeit noch nicht verfügbarer Therapiemöglichkeiten.

Die Kraftwerke unserer Zellen, die Mitochondrien, bauen über die Nahrung zugeführte Moleküle ab, um daraus einerseits Energie sowie anderseits neue Moleküle als Bausteine für neue Zellen zu produzieren. Für ein Gleichgewicht zwischen diesen beiden gegensätzlichen Vorgängen sorgt ein Enzym namens Protonen-translozierende Transhydrogenase oder NNT (Nikotinamid-Nukleotid-Transhydrogenase). NNT sitzt in der Mitochondrienmembran.

Über einen elektrochemischen Protonengradienten versorgt es im Zuge der Zellatmung die Mitochondrien mit genau der richtigen Menge des Co-Enzyms NADPH, einem essenziellen Stoffwechselvorprodukt. Bei allen Tieren – so auch beim Menschen – ist das ordnungsgemäße Arbeiten von NNT Voraussetzung für eine funktionierende Stoffwechselregulation.

Wie genau jedoch NNT den koordinierten Transfer von Protonen über die Membran und die Synthese von NADPH zuwege bringt, war bislang aufgrund mangelnder Kenntnisse über die atomare Struktur des Enzyms nicht bekannt. Domen Kampjut, PhD-Student am IST Austria gelang es nun gemeinsam mit dem Strukturbiologen und Leiter der Forschungsgruppe Professor Leonid Sazanov erstmalig, das NNT-Molekül von Säugetieren in einem Maßstab zu visualisieren, der es ihnen erlaubte, die strukturellen Prinzipien hinter der „Gatekeeper“-Funktion des Enzyms zu identifizieren – und so ein tieferes Verständnis über seine Funktion (und Fehlfunktion) zu erlangen.

“Resolution revolution” am IST Austria

Die atomare Analyse des Enzyms NNT war den Wissenschaftern nur durch Zugang zu neuen spitzentechnologischen Entwicklungen im Bereich der Kryo-Elektronenmikroskopie möglich, der sogenannten „Resolution revolution“ (zu Deutsch etwa: „Revolution der Auflösung“). Teile der generierten Daten basieren auf der Verwendung eines von drei neuen Kryo-Elektronenmikroskopen, die erst im Herbst 2018 am IST Austria installiert wurden.

Das Kryo-Transelektronenmikroskop „300kV FEI Titan Krios“ in Klosterneuburg lieferte den Wissenschaftern – nach einem sehr zeit- und arbeitsintensiven Bildverarbeitungsprozess und mit Unterstützung der ExpertInnen der zentralen Serviceeinrichtung Electron Microscopy Facility des IST Austria – auf nahezu atomarer Ebene hochaufgelöste Bilder der drei abgegrenzten Domänen des Moleküls in ihren unterschiedlichen Konformationszuständen. Die Ergebnisse dieser Analyse sind somit die ersten Daten, die auf Basis des neuen Mikroskops am IST Austria veröffentlicht wurden.

Türöffner für Protonen – und für neue Behandlungsmöglichkeiten

Mithilfe der generierten Bilder konnten die Strukturbiologen zeigen, wie jene Domäne des Moleküls, welche NADPH bindet, den Protonenkanal zu beiden Seiten der mitochondrialen Membran öffnen kann.

Erstautor Domen Kampjut: „NNT wird bereits seit Jahrzehnten untersucht, aber mit klassischen bildgebenden Verfahren wie zum Beispiel der Röntgenkristallographie war es nicht möglich, die Struktur dieses hoch dynamischen Moleküls im Detail zu studieren. Die Analyse und Probenaufbereitung von Membranmolekülen wie NNT für die Kristallographie ist außerdem aufgrund ihrer Fragilität besonders herausfordernd. Nur dank der Technik der Kryo-Elektronenmikroskopie können wir schlussendlich ganz klar sehen, wie der Protonentransfer funktioniert – und damit eine Wissenslücke darüber schließen, was zu tun ist, sollte dieser Mechanismus einmal nicht funktionieren.“

Professor Leonid Sazanov fügt hinzu: „Die Struktur der Transhydrogenase ist besonders spannend, weil eine, noch dazu relativ große ihrer drei Domänen eine erstaunliche 180-Grad-Drehung nach ‚oben‘ oder ‚unten‘ vollzieht. Soweit wir wissen ist dies unter den derzeit bekannten Enzymmechanismen ein einzigartiges Phänomen. Diese Rotationsbewegung macht einfach Sinn und passt zu unseren Annahmen über den Protonentransfer – und sie demonstriert uns, mit welch kreativen Lösungen die Natur aufwarten kann, um komplexe Aufgaben zu bewältigen.“

Die Ergebnisse sind ein weiterer wichtiger Schritt in Richtung Realisierung neuer Therapiemöglichkeiten. Zum Beispiel hat die Entwicklung eines derzeit noch nicht verfügbaren NNT-Inhibitors großes therapeutisches Potenzial in Zusammenhang mit diversen Stoffwechselstörungen wie dem Metabolischen Syndrom und einigen Krebsarten.

Hintergrundinformation
Neue Kryo-Elektronenmikroskope am IST Austria – Spitzentechnologie unterstützt Spitzenforschung

Im Jahr 2018 erwarb das IST Austria drei hochmoderne Kryo-Elektronenmikroskope (Kryo-EM) als Teil der bereits etablierten Electron Microscopy Facility, einer der zentral organisierten Serviceeinrichtungen am Institut. Die neuen Mikroskope erlauben es WissenschafterInnen, biologische Strukturen in nahezu atomarer Auflösung zu studieren. Die Kryo-EM-Technologie, die ihren Entwicklern 2017 den Nobelpreis in Chemie einbrachte, führte in den vergangenen Jahren bereits zu einer Reihe an bahnbrechenden Entdeckungen im Bereich der Biowissenschaften. Kryo-EMs erlauben die Beobachtung biologischer Proben wie Proteine in ihrem natürlichen Zustand und sind damit für StrukturbiologInnen unabkömmlich.

Das IST Austria verfügt über je ein 300 kV- und ein 200 kV-Transelektronenmikroskop sowie ein Kryo-basiertes fokussiertes Ionenstrahlmikroskop (Cryo FIB/SEM). Das Mikroskop „300 kV FEI Titan Krios“, das im Zuge der aktuellen Studie Verwendung fand, ist besonders hervorzuheben: „Diese Maschine ist österreichweit einzigartig“, so der Leiter der Electron Microscopy Facility Ludek Lovicar. „Derzeit verfügt keine andere Institution in Österreich über ein solch leistungsstarkes Kryo-EM.“ Die vorliegende Studie demonstriert, dass wissenschaftliche Exzellenz gepaart mit innovativer Technologie bahnbrechende Ergebnisse liefern und deren Anwendungsbereich weiter ausdehnen kann.

Weitere Informationen: https://ist.ac.at/en/research/scientific-service-units/electron-microscopy-facil...

Originalpublikation:
Domen Kampjut & Leonid A. Sazanov. 2019. Structure and mechanism of mitochondrial proton-translocating transhydrogenase. Nature. DOI: 10.1038/s41586-019-1519-2

Projektförderung:
Dieses Projekt wurde durch Mittel aus dem Horizon 2020 research and innovation program der Europäischen Union unter dem Marie Skłodowska-Curie Grant Agreement Nr. 665385 finanziert.

Originalpublikation:

https://www.nature.com/articles/s41586-019-1519-2

Weitere Informationen:

https://seafile.ist.ac.at/d/0441b17c26c7406cafe0/ Downloadlink Bildmaterial

Bernhard Wenzl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://ist.ac.at/de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entstanden Nervenzellen, um mit Mikroben zu sprechen?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen
09.07.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

10.07.2020 | Energie und Elektrotechnik

Kosmische Katastrophe bestätigt Einsteins Relativitätstheorie

10.07.2020 | Physik Astronomie

Entstanden Nervenzellen, um mit Mikroben zu sprechen?

10.07.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics