Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Methode gibt ‚lebensnahe‘ Einblicke in zelluläre Prozesse

01.07.2016

Veröffentlichung in „Angewandte Chemie“

Proteine sind die Grundbausteine allen Lebens auf der Erde und spielen eine entscheidende Rolle bei fast allen Prozessen, die in den Zellen von Organismen stattfinden.


Erstmals wurden Signale eines ausgewählten Proteins direkt in einer aus Bakterienzellen gewonnener Lösung gemessen.

Institut für Physikalische Biologie


Neuartiges DNP-verstärktes Hochfeld-NMR-Spektrometer

Forschungszentrum Jülich

Ein internationales Forscherteam unter Leitung von Dr. Manuel Etzkorn am Institut für Physikalische Biologie der Heinrich-Heine-Universität Düsseldorf (HHU) hat nun ein Verfahren entwickelt, mit denen die Strukturen und Interaktionen der Bio-Moleküle unter wesentlich natürlicheren Bedingungen als bisher sichtbar gemacht werden können. Damit ermöglicht die Methode neuartige Einblicke in biologische Systeme.

Die Forscher nutzten hierfür ein neuartiges NMR-Spektrometer des Biomolekularen NMR-Zentrums auf dem Campus des Forschungszentrums Jülich. Die Ergebnisse wurden in der aktuellen Ausgabe der renommierten Fachzeitschrift Angewandte Chemie (International Edition) veröffentlicht und durch Erscheinen auf der innenliegenden Titelseite hervorgehoben.

Winzige Proteinmoleküle verrichten so gut wie alle Aufgaben in unseren Zellen, können bei Fehlfunktionen aber auch schwere Krankheiten wie die Alzheimer-Demenz oder Krebs auslösen. Um die komplexen dreidimensionalen Strukturen dieser Moleküle in atomarem Detail aufzuklären, nutzen Forscher Verfahren wie die Nuklearmagnetische Resonanzspektroskopie (NMR). Dabei werden die Atomkerne in einem starken Magnetfeld so angeregt, dass sie ein schwach messbares Signal aussenden, aus denen sich die Position jedes einzelnen Atoms im Molekül ableiten lässt.

Das Verfahren ist eigentlich prädestiniert dazu, das Verhalten von Proteinen unter natürlichen Bedingungen zu beobachten. Eine Limitierung führte bis jetzt allerdings dazu, dass NMR-Messungen so ganz „lebensnah“ dann doch nicht waren: Denn im Plasma lebender Zellen sind Proteine von zahllosen anderen Molekülen umgeben.

Im Spektrometer erzeugen diese jedoch ein Hintergrundrauschen, in dem die feinen Signale des Zielproteins untergehen. Bisher benötigen NMR-Forscher deshalb möglichst pure Proben aus künstlich gereinigtem und hochkonzentriertem Protein.

„Die Proteine werden in aller Regel aus ihrer natürlichen Umgebung herausgenommen, was nicht nur ein aufwendiger Prozess ist, sondern auch zu verfälschten Einblicken führen kann“, sagt Dr. Manuel Etzkorn. Der Leiter einer Emmy-Noether-Nachwuchsgruppe am Düsseldorfer Institut für Physikalische Biologie arbeitet mit seinem Team an neuen Möglichkeiten, um das Potenzial der NMR-Methode für die biologische Forschung noch besser nutzbar zu machen.

Gemeinsam mit Kollegen des Max-Planck-Instituts für Molekulare Physiologie in Dortmund sowie der Universitäten Amsterdam und Sofia haben die Forscher nun ein neues Verfahren entwickelt, das das Problem der verrauschten Signale elegant löst. Es gelang ihnen, das NMR-Signal eines Zielproteins in einer direkt aus einer Bakterienzellkultur gewonnenen Lösung um ein Vielfaches und dazu noch sehr selektiv zu verstärken.

Der Großteil der Forschung fand dabei am Biomolekularen NMR-Zentrum auf dem Gelände des Forschungszentrums Jülich statt, einem der führenden NMR-Zentren in Deutschland. Es wird gemeinsam durch das Düsseldorfer Institut für Physikalische Biologie und das Jülicher Institute of Complex Systems (ICS-6) betrieben.

Die Wissenschaftler konnten dort ein neuartiges DNP-verstärktes NMR-Spektrometer einsetzen, bei dem das Spektrometer mit einem Mikrowellengenerator verbunden ist. Dieser regt Elektronen von speziellen, von den Forschern zu diesem Zweck modifizierten Molekülen in der Probe an, die ausschließlich an das Zielprotein binden. Die Anregung der Elektronen überträgt sich dabei auf die Atomkerne des Proteins und führt zu einer enormen Verstärkung des Signals.

Damit lassen sich Daten selbst aus Proben gewinnen, in denen nur geringe Konzentrationen des Proteins in Mischung mit anderen Molekülen vorliegen. Ausgewählte Proteine können also unter Bedingungen, die denen in lebenden Zellen deutlich besser entsprechen, mit atomarer Auflösung untersucht werden. Das vereinfacht nicht nur die Probenherstellung, da aufwändige Schritte zur Protein-Aufreinigung entfallen, sondern ermöglicht auch, die Einflüsse der natürlichen Umgebung besser zu verstehen.

„Die zielgerichtete Verstärkung von Proteinsignalen bietet eine Vielzahl spannender Anwendungen im Bereich der zellulären Strukturbiologie und hat das Potenzial, neuartige Einblicke in komplexe biologische Prozesse zu ermöglich“, sagt Dr. Etzkorn.

„Die Entwicklung neuer Methoden für die Strukturbiologie ist Schwerpunkt der Forschung des Biomolekularen NMR-Zentrums“, erklärt Prof. Dr. Dieter Willbold, Leiter des Zentrums und Direktor des Düsseldorfer Instituts für Physikalische Biologie und des Jülicher ICS-6. „Das neue Verfahren ist hierzu ein wichtiger Beitrag, der viele neue Möglichkeiten eröffnet.“

Originalpublikation:
Thibault Viennet, Aldino Viegas, Arne Kuepper, Sabine Arens, Vladimir Gelev, Ognyan Petrov, Tom N. Grossmann, Henrike Heise, Manuel Etzkorn: Selective Protein Hyperpolarization in Cell Lysates Using Targeted Dynamic Nuclear Polarization Angew Chem Int Ed 2016 June 28.
http://onlinelibrary.wiley.com/doi/10.1002/anie.201603205/full

Terminhinweis:

Derzeit bereiten die Wissenschaftler um Heise, Etzkorn und Willbold eine der größten NMR-Tagungen im deutschsprachigen Raum vor. Im September 2016 werden dafür hunderte internationale NMR-Forscher für drei Tage an die Heinrich-Heine-Universität Düsseldorf kommen.
Weitere Informationen unter:
http://www.fknmr.hhu.de/fgmr-2016/fgmr-discussion-meeting-2016.html

Ansprechpartner:

Dr. Manuel Etzkorn
Institut für Physikalische Biologie
Heinrich-Heine-Universität Düsseldorf
Tel.: +49 211 81-12023
Email: manuel.etzkorn@hhu.de

Prof. Dr. Dieter Willbold
Institute of Complex Systems, Strukturbiochemie (ICS-6)
Forschungszentrum Jülich/
Institut für Physikalische Biologie
Heinrich-Heine-Universität Düsseldorf
Tel.: 02461 61 2100
Email: d.willbold@fz-juelich.de

Weitere Informationen:

https://www.uni-duesseldorf.de/MathNat/ipb/team?index=1721
http://www.uni-duesseldorf.de/home/infocenter-hhu/aktuell/pressemitteilungen/pre...
http://www.fz-juelich.de/SharedDocs/Meldungen/ICS/ICS-6/DE/DNP-NMR.html

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Antibiotika: Neuer Wirkstoff wirkt auch bei resistenten Bakterien
11.11.2019 | Martin-Luther-Universität Halle-Wittenberg

nachricht Kleine RNAs verbinden Immunsystem und Gehirnzellen
11.11.2019 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Im Focus: Göttinger Chemiker weisen kleinstmögliche Eiskristalle nach

Temperaturabhängig gefriert Wasser zu Eis und umgekehrt. Dieser Vorgang, in der Wissenschaft als Phasenübergang bezeichnet, ist im Alltag gut bekannt. Um aber ein stabiles Gitter für Eiskristalle zu erreichen, ist eine Mindestanzahl an Molekülen nötig, ansonsten ist das Konstrukt instabil. Bisher konnte dieser Wert nur grob geschätzt werden. Einem deutsch-amerikanischen Forschungsteam unter Leitung des Chemikers Prof. Dr. Thomas Zeuch vom Institut für Physikalische Chemie der Universität Göttingen ist es nun gelungen, die Größe kleinstmöglicher Eiskristalle genau zu bestimmen. Die Forschungsergebnisse sind in der Fachzeitschrift Proceedings of the National Academy of Science erschienen.

Knapp 100 Wassermoleküle sind nötig, um einen Eiskristall in seiner kleinstmöglichen Ausprägung zu formen. Nachweisen konnten die Wissenschaftler zudem, dass...

Im Focus: Verzerrte Atome

Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Ionen hervorzurufen. Die heftige Anregung des Elektronenpaars in einem Heliumatom konkurriert so stark mit dem ultraschnellen Zerfall des angeregten Zustands, dass vorübergehend sogar Besetzungsinversion auftreten kann. Verschiebungen der Energie elektronischer Übergänge in zweifach geladenen Neonionen beobachteten die Wissenschaftler mittels transienter Absorptionsspektroskopie (XUV-XUV Pump-Probe).

Ein internationales Team unter Leitung von Physikern des MPIK veröffentlicht seine Ergebnisse zur stark getriebenen Zwei-Elektronen-Anregung in Helium durch...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

Automatisiertes Fahren und Recht

06.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Effizienz-Weltrekord für organische Solarmodule aufgestellt

11.11.2019 | Energie und Elektrotechnik

Antibiotika: Neuer Wirkstoff wirkt auch bei resistenten Bakterien

11.11.2019 | Biowissenschaften Chemie

Forschungsprojekt kombiniert Digitalisierung und Verfahrenstechnik

11.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics