Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Forschungsergebnisse zur Evolution von Proteinnetzwerken

21.03.2013
Organismen werden erst durch die systemweite Vernetzung der Proteine lebensfähig. Funktion und Evolution dieser Proteinnetzwerke zählen derzeit zu den spannendsten Fragen in der Biologie.

Der Bioinformatiker Thomas Rattei, Universität Wien, und der Physiker Hernan Makse, City University New York (CUNY), verglichen rekonstruierte Proteinnetzwerke. Die Ergebnisse sind sowohl für die Evolutionsforschung als auch für die Interpretation von Genomsequenzdaten interessant. Aktuell publizieren sie dazu in der renommierten Fachzeitschrift PLOS ONE.


Ausschnitt eines Proteinnetzwerks
(Copyright: Universität Wien)

Die Zellen aller Lebewesen bestehen maßgeblich aus Proteinen, die in einem komplexen Miteinander verschiedenste Funktionen ermöglichen. Diese reichen vom Stoffwechsel über den Erhalt und die Steuerung der Zelle bis zum Austausch von Signalen mit anderen Zellen und der Umwelt. Kaum ein Protein wirkt dabei für sich allein – deren systemweite Vernetzung macht die Organismen erst lebensfähig. "Das Wissen um Funktion und Evolution dieser Proteinnetzwerke ist aktuell eine der spannendsten Fragen in der Biologie und z.B. auch in der Krebsforschung bedeutsam", erklärt Thomas Rattei, Leiter des Departments für Computational Systems Biology am Universitätszentrum Althanstraße, sein Forschungsgebiet.

Auf der Suche nach dem Bauplan für Proteinnetzwerke

Durch die Kombination von 20 verschiedenen Bausteinen – den Aminosäuren – ergibt sich eine enorme Vielfalt theoretisch möglicher Proteinvarianten; viel mehr als die geschätzte Anzahl aller Sterne im Universum. Die zufällige Ausbildung einer Wechselwirkung zwischen Proteinen erscheint daher extrem unwahrscheinlich. Wie sich dennoch so komplexe und vielfältige Proteinnetzwerke in den heutigen Lebensformen ausbilden konnten, untersuchten Thomas Rattei, Professor für "In Silico Genomics"

an der Universität Wien, und Hernan Makse, Professor für Physik an der City University New York (CUNY), mit ihren jeweiligen Arbeitsgruppen.

Ausgangspunkt des gemeinsamen Forschungsprojekts war eine Hypothese, in welcher der Vervielfältigung von Proteinen im Laufe der Evolution besondere Bedeutung zukommt. Wird das Erbgut eines Proteins im Genom dupliziert, was evolutionär recht oft vorkommt, dann wechselwirken Kopie und Original mit denselben Partnern im Proteinnetzwerk. Verändern sich danach Original und Kopie, können neuartige Proteine mit individuellen Funktionen und eigenen Partnern im Netzwerk entstehen. Somit würden Interaktionen im Netzwerk nicht neu geschaffen, sondern durch Vervielfältigung und Veränderung aus einfacheren Vorläufern entstehen.

Proteinnetzwerke ausgestorbener evolutionärer Vorläufer rekonstruiert

In einem aufwändigen Computerexperiment haben die beiden Arbeitsgruppen um Bioinformatiker Thomas Rattei und Physiker Hernan Makse diese Hypothese überprüft und verfeinert. Hierfür wurde eine neuartige Methode entwickelt, mit der sich aus den Genomen und Proteinnetzwerken heute lebender Organismen die Netzwerke längst ausgestorbener evolutionärer Vorläufer rekonstruieren lassen. Verwendet wurden Daten von sieben Arten aus den verschiedensten Bereichen des Lebens: von Bakterien über Pilze, Pflanzen, Tiere bis hin zum Menschen.

Heutige Netzwerke – komplexe Strukturen durch einfache Mechanismen

Der Vergleich der so rekonstruierten frühen Proteinnetzwerke lieferte ein überraschend eindeutiges Ergebnis: die heutigen Netzwerke lassen sich fast vollständig durch den Mechanismus von Vervielfältigung und Veränderung erklären. Neuartige Wechselwirkungen zwischen bestehenden Proteinen entstehen hingegen extrem selten. Dieses Prinzip scheint in der Evolution universell zu wirken, denn es wurde durch Daten aller untersuchten Organismen bestätigt. Dieser Wachstumsmechanismus könnte auch für andere Typen biologischer Netzwerke wirken, und er erklärt auf einfache Weise besondere Eigenschaften, wie beispielsweise die Selbstähnlichkeit (Fraktalität) in Proteinnetzwerken.

Hilfreich für Interpretation von Genomsequenzdaten und Evolutionsforschung

Die Ergebnisse des gemeinsamen Forschungsprojekts der Universität Wien und der CUNY werden nicht nur für die Evolutionsforschung Bedeutung haben. Sie unterstützen insbesondere die Interpretation von Genomsequenzdaten, die in den letzten Jahren in vielen Bereichen der Biologie und Medizin zur etablierten Methode geworden ist. Diese Zielstellung haben auch zahlreiche aktuelle Projekte des Departments für Computational Systems Biology, das mit systemweiten Forschungsansätzen Krankheitserreger, mikrobielle Gemeinschaften und molekulare Wechselwirkungen zwischen verschiedenen Organismen analysiert.

Publikation in PLOS ONE:
The evolutionary dynamics of protein-protein interaction networks inferred from the reconstruction of ancient networks. Yuliang Jin, Dmitrij Turaev, Thomas Weinmaier, Thomas Rattei, Hernan Makse. In: PLOS ONE, 2013.
Wissenschaftlicher Kontakt
Univ.-Prof. Mag. Dr. Thomas Rattei
Department für Computational
Systems Biology
Universität Wien
1090 Wien, Althanstraße 14 (UZA I)
T +43-1-4277-762 10
M +43-664-60277-762 10
thomas.rattei@univie.ac.at
Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://dx.plos.org/10.1371/journal.pone.0058134
http://compsysbio.univie.ac.at/personen/rattei/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Antibiotikaresistenzen im Fokus der Forschung
12.12.2018 | Deutsches Zentrum für Infektionsforschung

nachricht Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab
12.12.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

ICTM Conference 2019 in Aachen: Digitalisierung als Zukunftstrend für den Turbomaschinenbau

12.12.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Biofilme generieren ihre Nährstoffversorgung selbst

12.12.2018 | Interdisziplinäre Forschung

Tanz mit dem Feind

12.12.2018 | Physik Astronomie

Künstliches Perlmutt nach Mass

12.12.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics