Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekularer Schalter entscheidet, wie stressresistent und langlebig die Fruchtfliege ist

05.06.2019

Fruchtfliegen ohne den Transkriptionsfaktor Ets21c leben unter stressarmen Bedingungen länger, sterben bei Stress jedoch früher / Veröffentlichung in Fachzeitschrift „Cell Reports“

Ein internationales Forschungsteam hat herausgefunden, dass die Regeneration von Zellen im Darm der Fruchtfliege Drosophila durch den Transkriptionsfaktor Ets21c beeinflusst wird. In einem gemeinsamen Projekt unter der Leitung von Professorin Dr. Mirka Uhlirova kooperierte das Exzellenzcluster für Alternsforschung CECAD der Universität zu Köln mit dem Labor von Dr. Tony Southall am Imperial College London zu den genetischen Grundlagen des bekannten Modellorganismus.


Das Bild zeigt Aufnahmen des hinteren Mitteldarms einer erwachsenen Drosophila.

Bild: Juliane Mundorf, Mirka Uhlirova

Die Ergebnisse wurden in der Zeitschrift „Cell Reports“ veröffentlicht.

Das Überleben und die Fitness von multizellulären Organismen wie der Fruchtfliege hängen auch von ihrer Fähigkeit ab, ihre Gewebe ständig zu erneuern. Das ist besonders wichtig für Gewebe, die dauerhaft Umwelteinflüssen ausgesetzt sind und von ihnen herausgefordert werden – wie beispielsweise das Epithel an der Innenseite unseres Verdauungstrakts.

Das Darmepithel ist hauptsächlich für die Nährstoffaufnahme und -verdauung verantwortlich, dient aber auch als selektive Barriere, die Krankheitserreger und toxische Substanzen daran hindert, in den Körper einzudringen. Uhlirova erklärt:

„Der Darm erneuert sich durch Stammzellen, die sich vermehren und differenzieren. So erhalten sie während der gesamten Lebensdauer eines Organismus die Funktion und Integrität des Gewebes. Schleichen sich Fehlfunktionen in die Stammzellen ein, funktioniert dieser Prozess nicht mehr reibungslos. Gewebe können degenerieren oder Krebs kann sich entwickeln.“

Die Studie eröffnet neue Einblicke in die molekularen Grundlagen dieser regenerativen Prozesse sowohl unter günstigen als auch unter Stressbedingungen. Dadurch können die Wissenschaftlerinnen und Wissenschaftler das Verhältnis von Stressresistenz und Langlebigkeit eines Organismus besser verstehen.

In diesem Verhältnis spielen Transkriptionsfaktoren eine besondere Rolle. Dies sind Proteine, die direkt an die DNA binden und die Expression spezifischer genetischer Informationen bestimmen. In dem Experiment war das Protein Ets21c erhöht aufzufinden, wenn die Fruchtfliege in einer Belastungssituation war, etwa bedingt durch Stress, bakterielle Infektionen oder Alterung.

Wieso die Fliege diesen Transkriptionsfaktor in einer solchen Situation hochregulierte, blieb jedoch ein Rätsel.

Dr. Juliane Mundorf von der Arbeitsgruppe Uhlirovas bei CECAD und ihre Kollegen und Kolleginnen schalteten daher die Funktion von Ets21c entweder in der gesamten Fruchtfliege oder gezielt in Stamm- oder differenzierten Zellen des Darmepithels ab, um die Wechselwirkung zwischen Stress und dem Protein zu erforschen.

Überraschenderweise entwickelten sich die Fliegen ohne Ets21c normal und lebten sogar länger als die Kontrollorganismen, bei denen der Transkriptionsfaktor nicht ausgeschaltet war – jedoch nur unter „stressfreien“ Bedingungen.

„Sobald die genetisch veränderten Fliegen Stress ausgesetzt wurden, zeigte der Ets21c-Mangel seine dunkle Seite“, sagt Mirka Uhlirova. „Fliegen ohne Ets21c starben unter Stress viel schneller. Das Darmgewebe erwachsener Fliegen benötigt also Ets21c, um sich zu regenerieren und Stresstoleranz auszubilden.“

Die Autorinnen und Autoren haben gezeigt, dass Ets21c die ständige Erneuerung des Darmepithels fördert, indem es die Vermehrung von Stammzellen anregt und den Abbau älterer Zellen koordiniert. Außerdem stellte sich heraus, dass der Transkriptionsfaktor mit der Lebensdauer der Fliege zusammenhängt. Uhlirova erklärt: „Während ein Verlust von Ets21c die Erneuerung verlangsamt – was für die Lebensdauer von Vorteil sein kann – macht es die Fliegen anfälliger für Stress, da sie das beschädigte Gewebe nicht regenerieren können. Zu viel Ets21c hingegen beschleunigt den Gewebeumsatz, was zu Überwucherung und vorzeitiger Alterung führt.“

Der Transkriptionsfaktor Ets21c und das Signalnetz, in dem es arbeitet, sind evolutionär von Fliegen zu Säugetieren erhalten geblieben. Das bedeutet, dass Stresssignalwege, an denen Transkriptionsfaktoren vom Typ Ets beteiligt sind, auch beim Menschen die Erneuerung im Epithelgewebe steuern könnten.

In zukünftigen Studien wollen die Wissenschaftlerinnen und Wissenschaftler die Mechanismen genauer untersuchen, die das Niveau und die Aktivität von Ets21c kontrollieren. Außerdem wollen sie herausfinden, ob auch andere Gewebe neben dem Darm den Transkriptionsfaktor benötigen, um sich zu regenerieren und auf Stress zu reagieren.

Inhaltlicher Kontakt:
Professorin Dr. Mirka Uhlirova
+49 221 478 84334
Mirka.Uhlirova@uni-koeln.de

Presse und Kommunikation:
Eva Schissler
+49 221 470 4030
e.schissler@verw.uni-koeln.de

Zur Veröffentlichung:
Ets21c governs tissue renewal, stress tolerance, and aging in the Drosophila intestine
Juliane Mundorf, Colin D. Donohoe, Colin D. McClure, Tony D. Southall, Mirka Uhlirova, (2019) Cell Reports 27:1-15.
DOI: 10.1016/j.celrep.2019.05.025

Gabriele Meseg-Rutzen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-koeln.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entstanden Nervenzellen, um mit Mikroben zu sprechen?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen
09.07.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics