Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Motoren - Rotation auf der Achterbahn

01.10.2019

LMU-Chemiker haben den ersten molekularen Motor entwickelt, der eine achtförmige Bewegung ausführen kann.

Molekulare Motoren wandeln extern zugeführte Energie in gezielte Drehbewegungen um und sind damit eine wichtige Grundlage für zukünftige Anwendungen in der Nanotechnologie. Die ersten derartigen Motoren wurden in den späten 1990er-Jahren entwickelt, seither hat sich eine wachsende Zahl unterschiedlicher Systeme etabliert.


Ein neuer molekularer Motor ermöglicht eine achtförmige direktionale Bewegung.

(Abbildung: H. Dube/LMU)

Ein Spezialist auf diesem Gebiet ist der LMU-Chemiker Dr. Henry Dube, der nun mit seinem Doktoranden Aaron Gerwien einen wichtigen Durchbruch geschafft hat: Wie die Wissenschaftler im Fachmagazin Nature Communications berichten, ist es ihnen gelungen, einen molekularen Motor zu entwickeln, der eine bisher unerreicht komplexe Bewegung auf einer achtförmigen Bahn ausführen kann.

Alle von Dube entwickelten molekularen Motoren basieren auf derselben Molekülklasse, sogenannten Hemithioindigo-Farbstoffen, die die Wissenschaftler chemisch modifizieren. Die Bewegung entsteht, in dem die Motoren auf verschiedene Weise um chemische Bindungen innerhalb des Moleküls rotieren.

„Alle bisher bekannten molekularen Motoren konnten sich aber nur linear bewegen oder im Kreis drehen“, sagt Dube. Den neuen Motor entdeckten die Wissenschaftler, als sie eine sogenannte Julolidin-Gruppe einfügten, um die Schalteigenschaften ihrer Motoren zu verbessern. „Experimentell haben wir dann herausgefunden, dass dadurch diese völlig neuartige Bewegung hervorgerufen wird“, sagt Dube. „Vermutlich hängt das damit zusammen, dass Julolidin ein sehr starker Elektronendonor ist.“

Insgesamt verläuft die achtförmige Bewegung des neuen Motors in vier Schritten, die abwechselnd durch Licht und durch thermische Energie – also durch Wärme – angetrieben werden. Die thermischen Schritte induzieren dabei eine sogenannte Hula-Twist-Rotation, durch die eine Strukturänderung erfolgt, die das Rücklaufen der Bewegung verhindert.

Ein weiterer Vorteil des Motors ist, dass die lichtgetriebenen Schritte durch grünes Licht induziert werden können, also etwa durch Bestrahlung mit grünen LEDs. Grünes Licht ist viel energieärmer als UV- oder Blaulicht, mit dem die meisten bisherigen Motoren angetrieben werden.

Sein Einsatz beeinflusst die Umgebung des Motors daher weniger als energiereicheres Licht, durch das beispielsweise chemische Bindungen gespalten werden könnten. Die Wissenschaftler sind überzeugt, dass ihr neues Antriebssystem die Möglichkeiten molekularer Maschinen deutlich erweitern und der Nanotechnologie neue Anwendungen eröffnen wird.

Wissenschaftliche Ansprechpartner:

Dr. Henry Dube
Department Chemie
E-Mail: henry.dube@cup.uni-muenchen.de
Tel.: 089 2180-77698
http://www.cup.lmu.de/oc/dube/

Originalpublikation:

Green Light Powered Molecular State Motor Enabling Eight-Shaped Unidirectional Rotation
Aaron Gerwien, Peter Mayer, Henry Dube
Nature Communications 2019
doi: 10.1038/s41467-019-12463-4

LMU Stabsstelle | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://www.uni-muenchen.de/forschung/news/2019/dube_molekularermotor.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Operativer Herzklappenersatz: Maßgeschneiderte Aortenklappe aus eigenem Herzgewebe
13.07.2020 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

nachricht Janggu macht Deep Learning zum Kinderspiel
13.07.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics