Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Mikrosieben gegen Pollen und Bakterien

10.05.2012
Chemiker der TU Chemnitz haben ein Verfahren mitentwickelt, mit dem sich sehr feine und dennoch stabile Mikrosiebe herstellen lassen - mögliche Anwendungen sind die Luftreinigung und die Aufbereitung von Trinkwasser

Sie können Bakterien und Pollen zurückhalten und eignen sich dadurch für die Aufbereitung von Trinkwasser, für die Filtration von Getränken und den Einsatz in der Medizintechnik: Mikrosiebe. Ihre Poren haben einen Durchmesser, der unter einem Mikrometer liegen kann.


Das in Chemnitz mitentwickelte Mikrosieb unter dem Rasterelektronenmikroskop: Man erkennt eine große Öffnung des zugrunde liegenden gröberen Siebes, das darauf montierte feine Sieb und Partikel, die in einem Filtrationstest von dem Mikrosieb zurückgehalten wurden. Die Poren des hier gezeigten feinen Siebes haben einen Durchmesser von rund einem Drittel eines Mikrometers, was rund einem Zweihundertstel eines Haardurchmessers entspricht. Foto: TU Chemnitz/Professur Physikalische Chemie

Das entspricht dem Tausendstel eines Millimeters. Mikrosiebe haben einen sehr niedrigen Durchflusswiderstand. Somit benötigt man bei ihrem Einsatz in der Filtertechnik vergleichsweise kleine Filtereinheiten und kann somit Platz sparen. Außerdem benötigen Mikrosiebe eine geringere Pumpenleistung und sparen somit Energie. Meistens werden Mikrosiebe durch Photolithographie hergestellt.

Diese Methode findet auch in der Mikroelektronik Anwendung. Sie erlaubt eine präzise Fertigung, ist aber vergleichsweise aufwändig und begrenzt die Fläche der so herstellbaren Mikrosiebe. An einem optimierten Verfahren zur einfacheren Herstellung von sehr feinen aber dennoch stabilen Mikrosieben ist die Professur Physikalische Chemie der Technischen Universität Chemnitz beteiligt. Dazu haben Wissenschaftler aus vier Universitäten ihr Know-how gebündelt.

Die Chemnitzer Forscher stellen gemeinsam mit Chemikern der Universität Ulm Mikrosiebe in einem sogenannten Schwimmgießverfahren her. Dabei gießen sie Monomere und Kieselgel auf eine Wasseroberfläche. Wenn man sich das vergrößert vorstellt, sieht es aus, als würde man Öl und wasserabweisend beschichtete Sandkörner auf das Wasser geben. Wenn sich die "Sandkörner" und das "Öl" gleichmäßig verteilt haben, wird das "Öl" ausgehärtet.

Die Partikel - die in Realität rund tausendmal kleiner als gewöhnliche Sandkörner sind - werden aufgelöst. Zurück bleibt das ausgehärtete Öl in Form eines dünnen Mikrosiebes mit einheitlichen Löchern. Dieses Mikrosieb besteht aus stark vernetztem Plexiglas. Der Durchmesser der Poren und die Dicke des Siebes liegen bei rund einem Drittel eines Mikrometers. Das entspricht etwa einem Zehntel einer lebenden Zelle oder einer Polle, sodass man diese mit dem Sieb auffangen kann. Bei Bedarf lassen sich die Poren auch soweit verkleinern, dass man sogar Viren zurückhalten kann. Allerdings ist dieses Mikrosieb so dünn, dass es leicht reißt.

Ingenieure der Universitäten in Twente und Aachen stellen Mikrosiebe auf eine noch andere Art her: durch Abformen. Sie übergießen eine Siliziumoberfläche, die wie ein Nadelkissen aussieht, mit einer Kunststofflösung. Dann entfernen sie das zusätzlich verwendete Lösungsmittel und ziehen die verbleibende, von den Nadeln durchbohrte Kunststoffschicht ab. Diese Mikrosiebe aus Twente und Aachen sind deutlich stabiler als die aus Chemnitz und Ulm, jedoch kann man mit dieser Technik keine Siebe herstellen, die fein genug sind, um Bakterien zurückzuhalten. Die Poren haben einen Durchmesser von fünf Mikrometern und lassen sich auch nicht unter einen Mikrometer verkleinern.

Deshalb haben beide Forschergruppen ihre Verfahren gebündelt: Die feinen Mikrosiebe aus Chemnitz und Ulm haben die Wissenschaftler auf die gröberen Mikrosiebe aus Twente und Aachen aufgebracht. Das Resultat ist ein strukturiertes Mikrosieb, das stabil genug ist, um es in Apparaturen einzuspannen. Außerdem ist es fein genug, um mikroskopische Teilchen zurückzuhalten. Theoretisch ließen sich diese Mikrosiebe als Endlosband mit unbegrenzter Fläche herstellen - im Gegensatz zum üblichen Verfahren der Photolithographie.

Einsatz finden können die neuen Mikrosiebe unter anderem in der Aufbereitung von Getränken, wo bisher körniges Material wie Sand oder Kieselgel zur Filterung verwendet wird oder in der Luftreinigung.

Die Forschungsergebnisse wurden kürzlich im internationalen Journal "Advanced Materials" veröffentlicht: Yan, F., Ding, A., Gironès, M., Lammertink, R. G. H., Wessling, M., Börger, L., Vilsmeier, K. and Goedel, W. A. (2012), Hierarchically Structured Assembly of Polymer Microsieves, made by a Combination of Phase Separation Micromolding and Float-Casting. Adv. Mater., 24: 1551–1557. Der Artikel ist online verfügbar: http://dx.doi.org/10.1002/adma.201104642 (Hinweis: Der Link funktioniert nur im Deutschen Forschungsnetz. Der Beitrag kann bei Bedarf bei den Autoren telefonisch unter 0371 531-31713 angefordert werden.)

Weitere Informationen erteilt Prof. Dr. Werner Goedel, Telefon 0371 531-31713, E-Mail werner.goedel@chemie.tu-chemnitz.de

Katharina Thehos | Technische Universität Chemnitz
Weitere Informationen:
http://www.tu-chemnitz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Unordnung kann Batterien stabilisieren
18.09.2018 | Karlsruher Institut für Technologie

nachricht Mit Nano-Lenkraketen Keime töten
17.09.2018 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: Mit Nano-Lenkraketen Keime töten

Wo Antibiotika versagen, könnten künftig Nano-Lenkraketen helfen, multiresistente Erreger (MRE) zu bekämpfen: Dieser Idee gehen derzeit Wissenschaftler der Universität Duisburg-Essen (UDE) und der Medizinischen Hochschule Hannover nach. Zusammen mit einem führenden US-Experten tüfteln sie an millionstel Millimeter kleinen Lenkraketen, die antimikrobielles Silber zielsicher transportieren, um MRE vor Ort zur Strecke zu bringen.

In deutschen Krankenhäusern führen die MRE jährlich zu tausenden, teils lebensgefährlichen Komplikationen. Denn wer sich zum Beispiel nach einer Implantation...

Im Focus: Schaltung des Stromflusses auf atomarer Skala

Forscher aus Augsburg, Trondheim und Zürich weisen gleichrichtende Eigenschaften von Grenzflächenkontakten im ferroelektrischen Halbleiter nach.

Die Grenzflächen zwischen zwei elektrisch unterschiedlich polarisierten Bereichen im Festkörper werden als ferroelektrische Domänenwände bezeichnet. In der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungen

Unbemannte Flugsysteme für die Klimaforschung

18.09.2018 | Veranstaltungen

Studierende organisieren internationalen Wettbewerb für zukünftige Flugzeuge

17.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Auf der InnoTrans 2018 mit innovativen Lösungen für den Güter- und Personenverkehr

18.09.2018 | Messenachrichten

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungsnachrichten

Extrem klein und schnell: Laser zündet heißes Plasma

18.09.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics