Mikroben können auf Stickstoffmonoxid (NO) wachsen

Einer der Bioreaktoren, mit denen Kartal und KollegInnen Zellen von K. stuttgartiensis im Labor züchteten. Die leuchtend rote Farbe entsteht durch eisenhaltige Cytochrom-C-Proteine in den Zellen. Boran Kartal

Stickstoffmonoxid ist ein faszinierendes und vielseitiges Molekül, wichtig für alle Lebewesen und unsere Umwelt: Es ist giftig und sehr reaktionsfreudig, es kann Signale übertragen, es zerstört die Ozonschicht unseres Planeten und es ist der Vorläufer des Treibhausgases Lachgas (N2O).

Stickoxide sind auch Teil von Abgasen, beispielsweise aus Verbrennungsmotoren in Autos, die unserer Gesundheit schaden. Noch etwas macht Stickstoffmonoxid besonders interessant: Lange bevor es auf der Erde Sauerstoff gab, war NO bereits als sehr energiereiches Oxidationsmittel verfügbar.

Es könnte also eine grundlegende Rolle bei der Entstehung und Entwicklung des Lebens auf der Erde gespielt haben. Der Max-Planck-Wissenschaftler Boran Kartal wirft gemeinsam mit KollegInnen ein ganz neues Licht auf die mikrobiellen Verwandlungen dieses Moleküls, in einer Untersuchung, die jetzt in Nature Communications veröffentlicht wurde.

Die schaffen das – mit Folgen für unser Klima

Eine große Frage zum Thema NO blieb bisher unbeantwortet: Können Organismen dieses Molekül nutzen, um zu wachsen? „Eigentlich würde man das vermuten“, sagt Kartal, „denn Stickstoffmonoxid gibt es seit der Entstehung des Lebens auf der Erde.“

Dennoch wurde noch keine Mikrobe gefunden, die auf NO wächst – bis jetzt. Kartal und seine KollegInnen von der Radboud Universität in den Niederlanden haben nun entdeckt, dass sogenannte anaeroben ammoniumoxidierenden (Anammox*) Bakterien NO direkt für ihr Wachstum verwenden.

Genauer gesagt: Sie koppeln den Prozess der Ammoniumoxidation an die Reduktion von NO und erzeugen dabei nur molekularen Stickstoff (N2).

Letzteres – die alleinige Produktion von N2 – ist besonders faszinierend: Einige Mikroben wandeln NO in Lachgas (N2O) um, das ein starkes Treibhausgas ist. N2 ist dagegen harmlos. So ist jedes Molekül NO, das nicht in N2O sondern stattdessen in N2 umgewandelt wird, ein Molekül weniger, das zum Klimawandel beiträgt.

„Auf diese Weise reduzieren Anammox-Bakterien die für die Lachgasproduktion verfügbare NO-Menge und in Folge auch die Menge an freigesetztem Treibhausgas“, erklärt Kartal. „Unsere Studie hilft dabei, zu verstehen, wie Anammox-Bakterien die Freisetzung von N2O und NO steuern können, und zwar sowohl in natürlichen wie auch in menschgemachten Ökosystemen, wie zum Beispiel Kläranlagen, in denen diese Mikroorganismen wesentlich zur Freisetzung von N2 in die Atmosphäre beitragen.“

Den Stickstoffkreislauf neu denken

Stickoxid ist ein zentrales Molekül im weltweiten Stickstoffkreislauf. „Unsere Ergebnisse ändern einiges, was wir bisher über den Stickstoffkreislauf der Erde dachten. Stickoxid wurde in erster Linie als Giftstoff betrachtet. Aber jetzt zeigen wir, dass Anammox-Bakterien von der Umwandlung von NO in N2 leben können“, sagt Kartal. Die vorliegende Studie wirft neue Fragen auf.

„Anammox, ein auf der ganzen Welt und für unser Klima sehr wichtiger mikrobieller Prozess, funktioniert anders, als wir vermutet haben.“ Zudem könnten auch andere Mikroben als die hier untersuchten NO direkt nutzen. Anammox-Bakterien sind auf dem ganzen Planeten zu finden. „Also könnten im Prinzip auch die auf Stickoxid wachsenden Anammox-Mikroben überall sein“, so Kartal weiter.

Eine Antwort, viele neue Fragen

Jetzt erkunden Kartal und seine Gruppe am Max-Planck-Institut in Bremen verschiedene Ökosysteme auf der ganzen Welt und suchen nach speziellen NO-umwandelnden Mikroorganismen. Sie wollen besser verstehen, wie die Mikroben das NO in Lebensräumen mit und ohne Sauerstoff verwenden. Dadurch werden vermutlich auch einige neue Enzyme entdeckt, die an der Stickoxidtransformation beteiligt sind. „Grundsätzlich wollen wir einfach verstehen, wie Organismen von NO leben können.“

* Was ist Anammox?

Anammox, kurz für anaerobe Ammoniumoxidation, ist ein weltweit bedeutsamer mikrobieller Teil des Stickstoffkreislaufs. Er findet in vielen natürlichen und menschgemachten Lebensräumen statt. Nitrit- und Ammoniumionen werden dabei direkt in molekularen Stickstoff (N2), Wasser und Nitrat umgewandelt.
Anammox verantwortet etwa die Hälfte der im Meer produzierten Menge an N2. Dadurch entfernt es große Mengen an Stickstoff aus dem Meer, der dann nicht mehr von anderen Organismen genutzt werden kann. So kann Anammox die Primärproduktion im Meer kontrollieren. Der Anammox-Prozess ist auch für die Abwasserbehandlung interessant. Stickstoffverbindungen mit Hilfe von Anammox-Bakterien zu entfernen ist deutlich kostengünstiger als herkömmliche Verfahren und es wird weniger Treibhausgas CO2 dabei freigesetzt.

Dr. Boran Kartal
Leiter der Gruppe Mikrobielle Physiologie
Max-Planck-Institut für Marine Mikrobiologie, Bremen
Telefon: +49 421 2028-645
E-Mail: bkartal@mpi-bremen.de

Dr. Fanni Aspetsberger
Pressesprecherin
Max-Planck-Institut für Marine Mikrobiologie, Bremen
Telefon: +49 421 2028-947
E-Mail: faspetsb@mpi-bremen.de

Ziye Hu, Hans JCT Wessels, Theo van Alen, Mike SM Jetten und Boran Kartal: Nitric oxide-dependent anaerobic ammonium oxidation. Nature Communications. DOI: 10.1038/s41467-019-09268-w

Max-Planck-Institut für Marine Mikrobiologie, Bremen, Deutschland
Radboud Universität, Nijmegen, Niederlande

https://www.mpi-bremen.de/Page3494.html

Media Contact

Dr. Fanni Aspetsberger Max-Planck-Institut für Marine Mikrobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer