Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meister der Regeneration: Wie Mikrogliazellen das Gehirn im Gleichgewicht halten

24.07.2015

Mainzer Wissenschaftler entschlüsseln wichtige Eigenschaften der Mikroglia

Bestimmte Zellen des Gehirns regenerieren sich unglaublich schnell und effizient: Das haben Wissenschaftler der Universitätsmedizin Mainz unter Federführung des Instituts für Molekulare Medizin herausgefunden. Sie stellten fest, dass sich sogenannte Mikrogliazellen innerhalb einer Woche fast vollständig regenerieren können.

Das Ergebnis legt den Schluss nahe, dass diese Zellen eine essentielle Rolle dabei spielen im Gehirn einen Gleichgewichtszustand – im Fachjargon Homöostase – aufrecht zu erhalten. Die Forschungsergebnisse sind in der aktuellen Ausgabe der renommierten Zeitschrift „Immunity“ veröffentlicht.

Mikrogliazellen sind lokale Immunzellen des Gehirns. Sie stellen die Hauptkomponente der Immunabwehr im Zentralen Nervensystem (ZNS) dar und bilden die erste Verteidigungslinie gegenüber potenziellen Krankheitserregern. Dies ist von großer Bedeutung, da die herkömmlichen ‚Wächter’ des Immunsystems die Blut-Hirn-Schranke nicht ohne weiteres überwinden können.

In ihrer alltäglichen Funktion schützen die Mikroglia dabei aktiv das Nervengewebe und unterstützen dessen Regeneration nach einer Verletzung. Sie erfüllen damit eine ähnliche Funktion wie Makrophagen – auch Fresszellen genannt – in anderen Geweben, weshalb sie auch als Gewebsmakrophagen des ZNS bezeichnet werden.

„Aufgrund dieser elementaren Bedeutung der Mikroglia im Gehirn stehen sie im Fokus unseres wissenschaftlichen Interesses“, erläutert Univ.-Prof. Dr. Ari Waisman, Direktor des Instituts für Molekulare Medizin an der Universitätsmedizin Mainz. „Dies vor allem auch vor dem Hintergrund, dass es erst seit kurzem Methoden und spezifische Marker gibt, die ausschließlich Mikrogliazellen sichtbar machen. Deshalb ist es nun möglich diese Zellen genauer zu charakterisieren.“ So sei beispielsweise bisher nicht bekannt gewesen, wie sich die Gesamtheit der Mikroglia über die gesamte Lebenszeit eines Organismus aufrechterhält.

In der aktuellen Studie gelang es den Mainzer Wissenschaftlern im Tiermodell gezielt Mikrogliazellen zum Absterben zu bringen. Andere Zellen des ZNS wurden hierdurch nicht beeinträchtigt. Die Ergebnisse zeigten eindrucksvoll, dass sich die wenigen übrig gebliebenen Mikroglia durch massive Proliferation – also Zellteilung und Zellwachstum – innerhalb von nur einer Woche wieder vollständig regenerieren konnten.

„Durch dieses hohe Regenerationspotenzial unterscheiden sich Mikroglia stark von den anderen Gehirnzellen, vor allem von Nervenzellen“, so Professor Waisman. „Aus diesem Grund gehen wir davon aus, dass Mikroglia eine essentielle Rolle bei der Aufrechterhaltung eines Gleichgewichtszustands im Gehirn spielen.“ Dieses Gleichgewicht ist enorm wichtig, um eine normale Gehirnleistung zu garantieren und somit auch neurodegenerativen Erkrankungen vorzubeugen.

Über die fundamentale Charakterisierung der Mikroglia hinaus, gelang es den Wissenschaftlern die schnelle Regeneration der Mikroglia noch weiter im Detail zu untersuchen. Dazu haben sie mithilfe modernster Labortechniken – dem sogenannten Next Generation Sequencing – das genetische Profil der Mikroglia entschlüsselt.

Sie fanden heraus, dass die Regeneration dieser Zellen nicht nur von dem bereits bekannten Botenstoff M-CSF (Macophage Colony Stimulating Factor) abhängt, sondern auch der Botenstoff IL-1 (Interleukin-1) eine wichtige Rolle spielt. Interleukin-1 steuert eine Vielzahl entzündlicher Prozesse im Körper, ist darüber hinaus aber auch an der Teilung und Differenzierung von diversen Zelltypen beteiligt. Dass es auch in der Regenation der Mikroglia involviert ist, war unerwartet, deutet aber darauf hin, dass Mikroglia diesen Botenstoff brauchen, um ihre „typische“ Identität während der Regeneration aufrechtzuerhalten.

Originalpublikation:
Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system
Julia Bruttger, Khalad Karram, Simone Wörtge, Tommy Regen, Federico Marini, Nicola Hoppmann, Matthias Klein, Thomas Blank, Simon Yona, Yochai Wolf, Matthias Mack, Emmanuel Pinteaux, Werner Müller, Frauke Zipp, Harald Binder, Tobias Bopp, Marco Prinz, Steffen Jung and Ari Waisman
Immunity, Volume 43, Issue 1, p92–106, 21 July 2015
DOI: http://dx.doi.org/10.1016/j.immuni.2015.06.012

Pressekontakt:
Dr. Renée Dillinger-Reiter, Stabsstelle Kommunikation und Presse Universitätsmedizin Mainz,
Telefon 06131 17-7428, Fax 06131 17-3496, E-Mail: pr@unimedizin-mainz.de

Über die Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Die Universitätsmedizin der Johannes Gutenberg-Universität Mainz ist die einzige medizinische Einrichtung der Supramaximalversorgung in Rheinland-Pfalz und ein international anerkannter Wissenschaftsstandort. Sie umfasst mehr als 60 Kliniken, Institute und Abteilungen, die fächerübergreifend zusammenarbeiten. Hochspezialisierte Patientenversorgung, Forschung und Lehre bilden in der Universitätsmedizin Mainz eine untrennbare Einheit. Rund 3.300 Studierende der Medizin und Zahnmedizin werden in Mainz ausgebildet. Mit rund 7.500 Mitarbeiterinnen und Mitarbeitern ist die Universitätsmedizin zudem einer der größten Arbeitgeber der Region und ein wichtiger Wachstums- und Innovationsmotor.

Weitere Informationen im Internet unter www.unimedizin-mainz.de

Dr. Renée Dillinger-Reiter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen
15.10.2018 | Universität Rostock

nachricht Bio-Angeln für Seltene Erden: Wie Eiweiß-Bruchstücke Elektronik-Schrott recyceln
15.10.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Materiezustände durch Licht verändern

Forscherinnen und Forscher der Universität Hamburg stören die kristalline Ordnung

Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Neurowoche 2018: 7000 Experten für Gehirn und Nerven tagen in Berlin

15.10.2018 | Veranstaltungen

Berlin5GWeek: Private Industrienetze und temporäre 5G-Inseln

15.10.2018 | Veranstaltungen

PV Days in Halle zeigen neue Chancen für die Photovoltaik

11.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Smart Glasses Guide: Neues Tool zur Auswahl von Datenbrillen und Anwendungen

15.10.2018 | Informationstechnologie

Neurowoche 2018: 7000 Experten für Gehirn und Nerven tagen in Berlin

15.10.2018 | Veranstaltungsnachrichten

Grauer Star: Neues Verfahren bei der Katarakt-Operation

15.10.2018 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics