Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Limnologen beobachten Algen-Mutationen in Echtzeit

07.03.2016

Durch empfindliche Analyseverfahren können selbst bei Mikroorganismen Dutzende von Genen hinsichtlich der Variabilität auf DNA-Ebene untersucht und quantifiziert werden. Durch die Auswirkung der genetischen Information auf die Erscheinung einer Zelle oder einer Kolonie/Filaments im Zuge der Genexpression können Forscher die Dimension der Mikrodiversität in Freilandpopulationen aufzeigen und das Anpassungspotential erfassen.

Cyanobakterien (phototrophe Mikroorganismen) zeigen in Gewässern durch klimatische und anthropogene Einflüsse bedingte Veränderungen an, z.B. durch das Auftreten von Algenblüten.


Algenblüte an der Gewässeroberfläche

G. Christiansen, ILIM


Forschungsgruppen-Leiter Rainer Kurmayer

ILIM

Diese kolonie-bildenden Cyanobakterien kommen in Seen und Fließgewässern häufig vor und beeinträchtigen die Wassernutzung und das Ökosystem, weil sie verschiedene Gifte bilden, allem voran das Microcystin.

Dieses leberschädigende Gift kann nach Aufnahme größerer Wassermengen bei Vieh und Mensch die Gesundheit beeinträchtigen. Forscher um Rainer Kurmayer vom Forschungsinstitut für Limnologie, Mondsee, der Universität Innsbruck haben nun die Basis dafür geschaffen, die Bildung dieser Gifte auf genetischer Ebene vorherzusagen.

Alternative zur Hochdurchsatzsequenzierung

Die Erbanlagen für die Synthese dieser Gifte unterliegen Veränderungen, die aufgrund der Vielzahl der involvierten Genorte nur schwierig in Echtzeit untersucht werden können. In einem soeben in BMC Microbiology erschienen Artikel dokumentieren Forscher der Universität Innsbruck, wie sie das durch die Isolation von Einzelfilamenten und die Verwendung sensitiver „Proof-Reading Polymerasen“ nun möglich gemacht haben.

Neben der morphologischen Analyse im Lichtmikroskop setzen sie genetische Einzelkolonie-Verfahren zur Charakterisierung der Entstehung einzelner Merkmale als auch zur quantitativen Erfassung der Expression wichtiger funktioneller Gene (z.B. Lichtschutz, Nährstoffassimilation) ein.

„Unser Einzelfilamentansatz stellt eine Alternative zur klassischen Hochdurchsatzsequenzierung dar. Bei unserer Methode werden zusätzliche Informationen eines Individuums wie die Wuchsform und verschiedene morphologische und ultrastrukturelle Merkmale gewonnen, woraus wichtige Erkenntnisse zur Ökologie und Nischendifferenzierung der Individuen abgeleitet werden können. Im Zuge des vom österreichischen Wissenschaftsfonds geförderten Projekts konnten wir nun erstmals jene Veränderungen in den Erbanlagen quantifizieren, die die Synthese von Microcystin beeinflussen“, erklärt Rainer Kurmayer.

Mutationen vorhersagen

Die beobachteten Mutationen führen entweder zur Löschung von Genorten oder stellen sogenannte springende Gene (Transposasen) dar, die anhand von kurzen Erkennungssequenzen durch Insertion in verschiedene Genorte Mutationen auslösen. Die Ergebnisse der Studie zeigen, dass diese springenden Gene nicht zufällig aktiv sind, sondern ihre Aktivität mit repetitiven DNA-Abschnitten, die als Erkennungsregion dienen, korreliert. Dadurch ist es bedingt möglich, Mutationen vorherzusagen. Die Forscher wollen die molekularen Mutationsergebnisse durch phylogenetische Analysen und multivariate statistische Auswertungen mit den vor Ort gemessenen Umweltbedingungen in Zusammenhang bringen. „Dadurch können letztlich auch jene Habitate, die durch spezifischen Umweltstress wie Nährstoffeintrag, Erwärmung und UV-Strahlung besonderen selektiven Druck auf die Bildung von Microcystin ausüben, identifiziert werden“, resümiert Rainer Kurmayer.

Fachliche Rückfragen:
Ass.-Prof. Dr. Rainer Kurmayer
Forschungsinstitut für Limnologie, Mondsee
Universität Innsbruck
E-Mail: rainer.kurmayer@uibk.ac.at

Aussendung:
Dr. Sabine Wanzenböck
Öffentlichkeitsarbeit Forschungsinstitut für Limnologie, Mondsee
Universität Innsbruck
E-Mail: sabine.wanzenboeck@uibk.ac.at

Weitere Informationen:

http://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-016-0639-1 Qin Chen, Guntram Christiansen, Li Deng, Rainer Kurmayer in BMC Microbiology: Emergence of nontoxic mutants as revealed by single filament analysis in bloom-forming cyanobacteria of the genus Planktothrix (DOI: 10.1186/s12866-016-0639-1)
https://www.uibk.ac.at/limno/personnel/kurmayer/ Rainer Kurmayer
http://www.uibk.ac.at/limno/research/projects/mobilomics/ FWF-Projekt

Mag. Stefan Hohenwarter | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht IMMUNOQUANT: Bessere Krebstherapien als Ziel
19.10.2018 | Julius-Maximilians-Universität Würzburg

nachricht Auf dem Weg zu maßgeschneiderten Naturstoffen
19.10.2018 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics